
AD-A266 540-I I~il llII11tll tll lll! lii~ i I ••

AFIT/GCE/ENG/93J-01

DTICr
S ELECTk

JUL06 1993A

ANNS
An X Window Based Version

of the
AFIT Neural Network Simulator

THESIS
Ching-Seh Wu

Captain, ROCAF, Taiwan

AFIT/GCE/ENG/93J-01

Approved for public release; distribution unlimited

93-15241
MM l_

AFIT/GCE/ENG/93J-01

ANNS

An X Window Based Version

of the

AFIT Neural Network Simulator

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology-esi For -

Air University NTIS TRA&I

In Partial Fulfillment of the Unannou.':ced
Jwstificaition.........

Requirements for the Degree of
By

Master of Science in Computer Engineering Dist.,b-t-o4 1

A-ai~abili!y Codes
Avail a,:d I or

Ching-Seh 7u, B.S. Speci

Captain, ROCAF, Taiwan

June, 1993 fl2O QUALIy

Approved for public release; distribution unlimited

Preface

The objective of my research was to develop a neural network simulator us-

ing the techniques of modern software engineering. An X window based version

of the AFIT Neural Network Simulator, or ANNS, is the result of this research.

With respect to reach the goal of this thesis efforts, a hybrid software engineering

paradigm which combines the best characteristics of the classic life cycle, prototype,

and iterative methodologies was used for developments;

This thesis documents the analysis, design and implementation of the ANNS

system. This system environment was developed for the study and research of

dynamical changes in patterns of weight and nodes for artificial neural networks.

Graphical representations of neural network algorithm simulations are displayed us-

ing X window based graphical routines. This system provides a user interface for

neural network programmers that they can develop and add their own design of

new neural network paradigms or algorithms into this system easily and become an

integrated system.

I have many thanks to my thesis advisor, Dr. Steve K. Rogers, for his encour-

agement and enthusiasm, and allowing me almost complete freedom over the design

and implementation of ANNS. I also wish to thank my committee members, Lt.

Col. Phil Amburn and Dr. Denny Ruck, for their hints, suggestions, and editing of

the draft manuscripts. I also want to thank Dr. Gregory L. Tarr for his wonderful

NeuralGraphics.

I especially want to thank my beautiful wife, Pi-chiao (Joy) Yu, who basically

lived almost two years as a single parent. I cannot repay her for the patience,

understanding and support she provided during these twenty-seven months in United

States. I also wish to thank my sixteen month old son, Kevin Wu, for making me

smile when I needed it most. Finally, I want to extend my gratitude to everyone in

my family in Taiwan - my parents, my parents in law, my two brothers, and my two

brothers in law and three sisters in law. Thank you very much!

Ching-Seh Wu

III~o

Table of Contents

Page

Preface ii

List of Figures ix

Abstract ... xii

L Introduction 1

1.1 Background 2

1.1.1 Artificial Perception 3

1.2 Problem 4

1.3 Research Objectives 4

1.4 Assumptions 5

1;5 Approach 6

1.6 Summary 7

II. Literature Revicw 9

2.1 Introduction ; 9

2.2 Object-Oriented Design 9

2.2;1 Object-Oriented Design Concepts. ; . 10

2.2.2 A Sample Object Model 13

2.2.3 Object-Oriented Design Process 15

2.2.4 Booch's Object-Oriented Design Process...... 17

2.2.5 Advantages and Strong Points of Object-Oriented

Design 20

2.2,6 Object-Oriented Design and Simulation 22

2.3 Graphical User Interfaces 23

iv

Page

2M3.1 User Interface Design 24

2.3.2 User Interface Characteristics 26

2.3.3 User Guidance 27

2.4 The X Window System 27

2.4.1 X Window System Principles 28

2.4.2 Toolkits 31

2.5 The current status of the NeuralGraphics 34

2.5.1 Basic Structures and Design Considerations. . . 34

2.5.2 Objects and Operations 35

2.5.3 Initialization Modules 36

2.5.4 The Main Program Loop 36

2.6 Summary 39

HI. Design Methodology, System Requirements Analysis a,•d Prel2minary

Design 41

3.1 Introduction 41

3.2 Design Methodology 41

3.2.1 Current Methodologies 41

3.2.2 The Methodology Decision 45

3.3 System Requirements Analysis 48

3.3.1 End-User Requirements Analysis 50

3.3.2 Client-Programmer Requirements Analysis ... 51

3.3.3 Enumerated Requirement' for ANNS System. . 52

3.4 Preliminary Design 58

3.5 Summary 63

IVM Detailed Object-Oriented Design and Implementation 66

4.1 Introduction 66

V

Page

4.2 Motivations for Selecting XView as GUI 66

4.2.1 From Users Perspective; 66

4.2.2 From Programmers Perspective 67

4.3 Detailed Object-Oriented Design 67

4.3.1 Main Process Window Module 69

4.3.2 Main Menu Module 69

4.3.3 Central Control Window Module 69

4.3.4 Environment Control Window Module 72

4.3.5 Exit Window Module 72

4.136 Graphical View Window Module 74

4.3.7 Master Control Window Module 74

4.3.8 Multilayer Perceptron Paradigm 75

4.4 Implementation 75

4.4.1 Creating and Mapping Objects from Detailed De-

sign Modules 78

4.4.2 Types of Objects in XVicw 78

4.4.3 Implementation Decisions 80

4.4.4 GUI Replacement Strategy from Silicon Graphics

for Multilayer Perceptron Paradigm 83

4.5 Testing Appraoches 84

4.5.1 Unit Tests 84

4.5.2 External Function Tests 84

4.5.3 Integration Tests 85

4.5.4 System Tests 85

4.5.5 Acceptance Tests 86

4;5.6 Installation Tests 86

4.5.7 Regression Tests 86

4.6 Results of Implementaion 86

4.7 Summary 92

vi

Page

V. Conclusions and Recommendations 95

5.1 Introduction 95

5.2 Research Summary 95

5.3 Recommendations for Further Research 96

5.3.1 Develop and Integrate all NN Paradigm Compo-

nents into ANNS 97

5U3.2 A Network Version of the ANNS 97

5.3.3 Portability Considerations 97

5.4 Conclusions 97

Appendix A. ANNS User's Manual 99

A.1 Introduction 99

A,2 Backgrounds Needed for Users 100

A.2.1 Ideas of Computer Gambling 100

A.212 Multilayer Perceptron Paradigm 104

A.3 Getting Started 105

A.3.l Set Path 105

A.3.2 The Mouse 105

A.3.3 The Main Window 106

A.3.4 Iconify ANNS 107

A.3.5 The Main Menu 107

A.3.6 Master Control Panel 113

A.4 Setup 116

A.4.1 Setup Data Files 117

A.4;2 Backpropagation Paradigm Input Parameter Op-

tions 118

A.5 Run simulation 120

vii

Page

Appendix B. ANNS Programmer's Guide........................121

B.1 Introduction...................................121

B.2 Backgrounds Needed for Programmers.................122

B.3 Overview of ANNS...............................123

B.3.1 Objects Associated with X Window System . 123

B.3.2 ANNS Architecture........................125

B�3.3 Object Creating and Mapping Using XView . . . 128

B.3.4 ANNS Directory Structure...................130

B.4 General Procedure for Adding a New NN Paradigm . . . 136

B.4.1 Create a working directory...................136

B.4.2 BackProp Subdirectory....................143

Appendix C ANNS User Evaluation Form.......................145

Appendix D The ANNS Source Codes.........................153

Bibliography..154

Vita..158

viii

List of Figures
Figure Page

1. Inheritance for graphic figures 11

2. Object Model of Windowing System 14

3. The X Client.Server Model 30

4. Basic X Environment 32

5. Typical X Windows Configuration 33

6. The Classic Life Cycle Model 43

7. ANNS Design Methodology 46

8. The ANNS System Overview 49

9. The TopwLevel Object Functional Model of Design for ANNS System 50

10. The Functional Decomposition Diagram Level 1: Manage ANNS System 52

11. The Functional Decomposition Diagram Level 2: Manage NN Algoý

rithm Simulation 53

12. The Functional Decomposition Diagram Level 3: Modify Paradigm . 54

13. The Functional Decomposition Diagram Level 2: Manage Simulation

Environment 5

14. The Functional Decomposition Diagram Level 3: Manage NN Algo'

rithm Window 56

15. High-Level Object Class Structure 59

16. ADT Specification for ANNS window Object 60

17. Instances of windows 61

18. ADT Specification for ANNS menu Object 62

19. ADT Specification for ANNS component Object 63

20. Structure of NN Algorithm Windows 64

21. Booch Module Symbols 68

22. The Architecture of ANNS at the Top Level 70

ix

Figure Page

23. Module Diagram for Main Process Window71

24. Module Diagram for Main Menu Module 71

25. Module Diagram for Central Control Window Module 72

26. Module Diagram for Environment Control Window Module 73

27. Module Diagram for Exit Window Module 74

28. Module Diagram for Graphical View Window Module 75

29. Module Diagram for Master Control Window Module 76

30. Module Diagram for Multilayer Perceptron NN subsystem 77

31. The IEs Communication Model 82

32. Main Window Model 87

33. The ANNS Central Control Panel Model 87

34. The ANNS Environment Control Panel Model 88

35. The ANNS Master Control Panel Model88

36. The ANNS Configuration Options Panel Model 89

37. The ANNS Icon 90

38. Algorithm Window Model 90

39. Two Algorithm Windows Comparison Model 91

40. Simulation Status Window Model 92

41. On-line Help Window Model 93

42. Exit Notification Window Model 94

43. Main Window 106

44. The ANNS Icon 107

45. The ANNS Master Control Panel 109

46. The ANNS Configuration Control Window 110

47. Simulation W indow 111

48. The ANNS Central Control Panel 111

49. Two Simultaneously Simulation Windows 112

x

Figure Page

50. The ANNS Environment Control Panel 113

51. Exit Notification Window 114

52. On-line Help Window115

53. Object Model of X Window System 124

54. The Idealistic Abstract Model of ANNS 126

55. The Architecture of ANNS at the Top Level 127

56. ANNS Directory Structure 131

57. The lEs Communication Model 133

58. Module Diagram for BackProp NN subsystem 143

xi

AFIT/GCE/ENG/93J

Abstract

This thesis presents an X Window based neural network simulation environ-

ment developed at Air Force Institute of Technology (AFIT) using the techniques of

modern software engineering . This artificial neural network simulator is a tool

running on Sun SPARCstations and supporting two user modes: end-users and

client-programmers. End-users interact with neural network paradigms developed

by client-programmers for the purpose of studying and analyzing the execution of a

particular Neural Network (NN) paradigm, or class of NN algorithms. Client pro-

grammers maintain the system and use this environment for the development of

new NN paradigms or algorithms for end-users. The development follows a hybrid

software engineering paradigm which combines the best characteristics of the clas-

sic life cycle, prototype, and iterative methodologies through requirements, design,

implementation, and testing. An object-oriented approach is used for the design

including preliminary and detailed design. The system is implemented with the C

programming language on Sun workstation and uses the XView window-based envi-

ronment. It provides users with a variety of control and input options: simulation

speed control, multiple and simultaneous NN algorithm simulations, and simulation

environment control;

xii

ANNS

An X Window Based Version

of the

AFIT Neural Network Simulator

L Introduction

An environment to examine internal operation of neural networks as they train

could help determine the efficiency and accuracy of different topologies. Evaluation

of internal constants and variables as the network trains may offer insight into which

values may be best suited for a particular set of circumstances. In order to test and

evaluate a number of paradigms and techniques, a neural network simulator with an

X window based Graphical User Interface called the AFIT Neural Network Simula-

tor (ANNS) was developed. The ANNS running on Sun SPARC workstations is a

collection of software tools and demonstrations that provide graphical displays and

allow users to interact with the network during execution of the training algorithms.

ANNS can provide a window so that the programer or user can view the dy-

namic behavior of an algorithm and its changes of learning state while the neural

network paradigms or algorithms execute. Rather than simply viewing the static

result of paradigm execution, ANNS presents paradigm execution as a series of tran

sitions. As an educational tool, ANNS can help students understand different al-

gorithms by providing a means for visualizing and interacting with algorithms as

they execute. As a research tool, ANNS is useful in the development of new neural

network paradigms, as well as the effective use of existing neural network algorithms.

1.1 Background

Many seemingly simple problems have proven intractable for ordinary com-

puters using conventional algorithms. These problems seem simple because we solve

them every day. Simple tasks like finding a light switch and turning it on would be

trivial for a person but difficult for a computer. Other examples include navigating

around a room, or selecting the best stocks and bonds to buy. Biological systems

seem to have little trouble with these types of problems. For example, a common

house fly has enough computational power in a few cells of protoplasm to fly straight

at the ceiling, flip over and land upside down attaching itself to the surface with its

little suction cup feet. Try that with a Cessna on autopilot.

Because biological systems seem so good at solving certain problems, many

researchers have suggested building computers based on biological models. The

results, for better or worse, have come to be grouped under the general heading of

artificial neural networks. A real neural network is one of those things found in all

animals for information processing.

Neural networks may offer a new approach to many problems which have

proven intractable for many conventional algorithms. With the increased interest

in finding neural network solutions to common problems, engineers and interested

others, could benefit from a graphic software package to try out simple problems.

That was the reason NeuralGraphics was built [51].

The NeuralGraphics system was developed to illustrate how to apply neural

networks to a variety of problems. The system was initially implemented on Silicon

Graphics IRIS 3130 system and has been moved to SGI IRIS 4D workstations. The

environment includes demonstrations and applications of multi-layer feedforward

networks using backpropagation, hybrid (joint supervised/unsupervised) training

paradigms, radial basis functions, Hopfield associative memory, error surface analy-

sis and network topology analysis. The program has been used on Silicon Graphics

2

system at the Air Force Institute of Technology and provided as a public domain

tool for several years.

1.1.1 Artificial Perception . Artificial perception, as opposed to artificial

intelligence, is the function of converting sensor measurement into symbols used

by the intelligence system. Artificial perception allows a sensor to understand its

environment.

Target identification and classification from electronic imagery and signal in-

telligence is a difficult problem due to the vast amounts of data involved. A single

image can contain millions of bits of information, all of which need to be processed.

Processing images for pattern recognition is a threefold problem. First, the targets

must be separated from the background or segmented; Second, the data must be

reduced to a manageable size, commonly called vector quantization or feature selec-

tion. This reduction in data can be accomplished by selecting specific features of

a pattern and using only these features for classification. Good pattern recognition

requires good features. Finally, the vectors must be classified. In most cases, the

final classification is the easiest part of a pattern recognition problem.

Determining which features of an image form the best description of an object

is a difficult problem. In addition to selecting the best features, the data must

sometimes undergo significant preprocessing.

Success of a particular classification problem depends on a number of factors.

First, consider the validity of the segmentation of the data. Has the actual target

been separated from the background data and noise ? Is the feature extraction

legitimate ? Do the features selected for the input vector represent a good description

of the target ? Once the target has been extracted from the background, is the vector

quantized description unique enough to allow classification ? Finally, is the neural

network topology sufficient for the size of the decision region and can it accurately

classify input pattern ? Special tools may be need to answer these questions.

3

7-

1.2 Problem

The original intent for NeuralGraphics running on Silicon Graphics IRIS work-

stations was to provide a platform for neural network research. This never really

transpired, for several reasons. First and foremost was a lack of available worksta-

tions. This problem has so far been addressed by using Sun Sparc stations, which are

commonly used by the general AFIT engineering student body. Since these worksta-

tions run Openwindows (an X Window System-based graphical user interface), new

students are indoctrinated into the Openwindows environment, and are therefore

unfamiliar with Silicon Graphics system.

In the real world of AFIT neural network environment, there is no unified and

integrated ANNS available for the end-users and client-programmers. End-users

interact with neural network paradigms developed by client-programmers for the

purpose of studying and analyzing the execution of a particular Neural Network

(NN) paradigm, or class of NN algorithms. Client programmers maintain the ANNS

system and use this environment for the development of new NN paradigms or algo-

rithms for end-users. NeuralGraphics was originally implemented using the graphics

library (GL) that comes with Silicon Graphics system and only supported a limited

number of neural network paradigms. For future development of neural network

paradigms, it will be difficult to integrate all new algorithms into a single simulator

environment for client-programmers.

1.3 Research Objectives

This thesis effort resulted in the development of an X window based Graphical

User Interface and integrated environment for controlling, displaying, and interacting

with the neural network algorithms for ANNS on Sun Sparc stations. This dual

purpose reflects the needs of two types of users: "client-programmers" and "end-

users"

4

Client-programmers are concerned with implementing the neural network paradigm

or algorithm simulation with which end-users interact. With respect to client-

programmers, the goal of this study is to create a program development which

provides a consistent interface to the Neural network Simulator system and sup-

ports reusable software modules. The programmers should not have to reimplement

modules common to several paradigms or algorithms, such as window m,.nagement,

user-interface, and display functions.

End-users view and interact with the simulations at a computer workstation.

With respect to end-users, the goal of this investigation is to provide an neural net-

work algorithm simulation run-time environment which provides a consistent method

for interacting with the simulations. After simulating one neural network paradigm

or algorithm, end~users should be able to simulate any neural network paradigm

or algorithm, regardless of the type of algorithm or the client-programmer of the

simulation.

In general, this investigation pursues the dual-interface approach. Develop a

system through which a user can select, execute, and control individual simulations,

each of which is a separate executable procedure. The client-programmer develops

the executable procedures with the help of a library of neural network algorithm

simulator support functions. The goal is to develop an X window based neural net-

work simulation environment which presents an easy-to-use, functional interface to

end-users, and provides an effective means for managing neural network simulations

within the simulation environment for client-programmers.

1.4 Assumptions

The research and development efforts in this thesis were based on the following

assumptions:

1. The code developed by Capt. Gregory L. Tarr correctly presents and displays

the neural network paradigms and algorithms. [51]

2. The X window based Graphical User Interface is to be developed on Sun Sparc

workstations using XView (X Window-System-based Visual/Integrated Envi-

ronment for Workstations).

3. The C programming language is to be used for implementation.

4. This thesis effort does not include conducting any sensitivity analysis or vali-

dation and verification of any neural network paradigms or algorithms.

5. Since AFIT seems to have selected the Sun Sparc station platform as the

engineering workstation standard, and since the user community will most

likely remain AFIT for the foreseeable future, then portability is not a major

issue at this time.

1.5 Approach

The basic approach to this thesis effort consists of the following steps:

1. Step 1 is a requirements analysis, including a review of current literature, such

as conducting research in the areas of the Object-Oriented Design, Graphical

User Interface, the X Window System and the NeuralGraphics status. Properly

understanding these areas is essential in accomplishing the thesis effort. This

is presented in Chapter I1.

2. Step 2 is an analysis of NeuralGraphics to determine what steps can be taken to

simplify the use of ANNS before the X window based Graphical User Interface

(GUI) replacement phase begins. This is presented in Chapter III.

3. Step 3 is a development of a preliminary object-oriented design. The design in-

cludes the relationships among objects as well as their attributes and methods.

This is also presented in Chapter III.

4. Step 4 is a development of detailed objected-oriented designs based on step 3.

This is presented in Chapter IV.

6

5. Step 5 is an implementation stage, including a rewrite of the NeuraIGraphics

system Graphical User Interface based on Silicon Graphics GL library. Step 5

starts with a detailed discussion outlining the motivations for choosing XView

and an analysis of currently available graphics libraries and their attractiveness

to ANNS. These are presented in Chapter IV.

1.6 Summary

Autonomous military target detection and classification from electronic im-

agery is a topic of great importance to the Department of Defense of the United

States. The solution to the problem may lie in one of several implementations of ar-

tificial neural networks. Several topologies for neural networks have been proposed,

each of which provide a solution for a narrow class of pattern recognition problems.

Some researchers (Huang and Lippmann) [11] feel that combinations of more than

one type of neural network may result in a more dynamic and robust system. The

goal of this thesis is to develop this kind of system called ANNS, an X window based

Artificial neural network simulator.

The next chapter consists of a literature review of object-oriented design meth-

ods, Graphical User Interface, X window systems and NeuralGraphics status.

Chapter III describes the object oriented approach used for the requirements

analysis and the initial design of the X windows based ANNS user environment.

Chapter IV provides the design and implementation of ANNS.

Chapter V presents the conclusions and recommendations.

In Appendix A, the ANNS User's Manual describes how to use the AFIT

Neural Network Simulator system. Appendix B is the ANNS Programer's Guide ý,

it describes the ANNS system and presents a procedure for creating new paradigms

and algorithms. Appendix C is ANNS User Evaluation Form which is a sample of

the standard form used by the Department of Electrical and Computer Engineering

7

at AFIT to evaluate software systems. Appendix D includes the source codes of the

ANNS system.

8

II. Literature Review

2.1 Introduction

The purpose of this chapter is to review some of the literature on object-

oriented design, Graphical User Interface, X Window System, and the NeuralGraph-

ics status. First, object-oriented design concepts are discussed, including the steps

involved in conducting an object-oriented design as described by various authors.

Advantages and strong points of object-.oriented design are also discussed.

Secondly, the graphical user interface design concepts are also discussed. In

order to begin developing a graphical user interface, we need to understand the user's

requirements and the role the user interface is to serve in fulfilling those requirements.

Once the "big picture" has been grasped, it is imperative that the user interface

designer have some understanding of the factors involved in creating a satisfactory

user interface. The last step in user interface development is to decide upon and

master a computer language or system that can be used to effectively implement the

design. Therefore, the basic concepts of the X Window System are described.

The X Window System is an industry-standard software system that allows

programmers to develop portable graphical user interfaces. X allows programs to

display windows containing text and graphics on any hardware that supports the X

protocol without modifying, recompiling, or relinking the application.

Finally, the current status of the NeuralGraphics software package is discussed,

including the basic structures and software design.

2.2 Object-Oriented Design

Object-oric ited design (OOD) is based on a decomposition of the system into

objects. This differs from functional decomposition techniques where the decompo-

sition is based on functions. Each module in an object-oriented design is based on

9

an object whereas, in the functional decomposition, the modules are based on steps

in the overall system process [2:211]. "Object-oriented design is a design method

which is based on information hiding" (42:204]. Korson and McGregor state that

"the object-oriented design paradigm takes a modeling point of view" [18:46].

2.2.1 Object-Oriented Design Concepts. Korson and McGregor describe

five concepts in object-orie~ited methods. These concepts, which are described in the

following section, are: "objects, classes, inheritance, polymorphism, and dynamic

binding" [18:42].

2.2.1.1 Object. Booch defines an object as "something you can do

things to. An object has state, behavior, and identity, the structure and behavior of

similar objects are defined in their common class. The terms instance and object are

interchangeable" [5:516]. The behavior of an object is "characterized by the actions

that it suffers and that it requires of other objects" [2:211]. "The intent of an object

is to represent a problem domain entity" [42:4-57]. For example, the coordinate

of a point on a workstation screen is (20, 20) . This point can be defined as an

single object with display operation on it. Since there are many points with different

coordinates on the screen and each of them is a individual object, the point can be

defined as an object class as shown in figure 1.

Objects use memory and have an associated address. Associated with an object

are procedures and functions which define the operations on the objects. [18:42]

"Objects communicate by passing messages to each other and these messages initiate

object operations" [42:204]. Communication may be asynchronous. OOD is an

excellent method to use in designing parallel or sequential programs. [42:204J

2.2.1.2 Class. A class is "a set of objects that share a common

structure and a common behavior. The terms class and type are usually (but not

always) interchangeable; a class is a slightly different concept than a type, in that it

10

emphasizes the importance of hierarchies of classes" [5:513]. "From the point of view

of a strongly typed language, a class is a construct for implementing a user-defined

type" [18:421. For example, Line, Arc, Polygon, and Circle are object classes in

figure 1.

Figure
color
center position
pen thickness
pen e__

move select
rotate display

S... Dlmension I Dimension [2 Dimn•ieigo

orientation orientationorimtatiO~i _ fill type... .

scalescale

Point Line Arc Spline Polygon Circle
radius num of sides

endpoint start angle control points vertices dlamnete

arc angle

display dislay display display display
J J -- - - -J -rotate-

Figure 1. Inheritance for graphic figures

Object-oriented techniques use an Abstract Data Type (ADT) to represent a

class of objects. According to Booch, an ADT "denotes a class of objects whose

behavior is defined by a set of values and a set of operations, including constructors,

selectors, and iterators" [3:216]. "Ideally, a class is an implementation of an ADT.

This means that the implementation details of the class are private to the class"

[18:421.

11

2.2. 1.3 Inheritance . "Inheritance is a relation between classes that

allows for the definition and implementation of one class to be based on that of

other existing classes" [18:43]. "Inheritance defines a 'kind of' hierarchy among

classes in which a subclass inherits from one or more superclasses; a subclass typically

augments or redefines the existing structure and behavior of its superclasses" [2:1541.

Korson and McGregor state that the inheritance relation often denotes an "is a"

relation. Inheritance supports reuse of software components. [18:43-44] Figure 1

shows classes of graphic geometric figures. Figure object class has 0 Dimensional,

1 Dimensional, and 2 Dimensional figures. Move, select, rotate, and display are

operations inherited by all subclasses. Scale applies to one- and two-dimensional

figures. Fill applies only to two-dimensional figures.

2.2.1.J, Polymorphism. Polymorphism is defined as "a concept

in type theory; according to which a name (such as a variable declaration) may

denote objects of many different classes that are related by some common superclass;

thus, any object denoted by this name is able to respond to some common set of

operations in different ways" [5:517]. In other words, this means that polymorphism

is a technique in which an object can have more than one form. "A polymorphic

reference has both a dynamic and a static type associated with it. The 'is a' nature

of inheritance is tightly coupled with the idea of polymorphism in a strongly typed

object-oriented language" [18:45]. The same operation may apply to many different

classes. Such an operation is polymorphic; that is, the same operation takes on

different forms in different classes. A method is the implementation of an operation

for a class. For example, the class File may have an operation print. Different

methods could be implemented to print ASCII files, print binary files, and print

digitized picture files. All these methods logically perform the same task-printing a

file.

12

2.2.1.5 Dynamic Binding. Booch defines dynamic binding as "a

binding in which the name/class association is not made until the object designated

by the name is created (at execution time)"' [5:513]. Binding, as defined by Booch,

"denotes the association of a name (such as a variable declaration) with a class"

[5:513]. Korson and McGregor state that dynamic binding "means the code asso-

ciated with a given procedure call is not known until the moment of the call at

runtime" [18:46]. Dynamic binding "is associated with inheritance and polymor-

phism in that a procedure call associated with a polymorphic reference may depend

on the dynamic type of that reference" [18:46].

2.2.2 A Sample Object Model. This section provides an object model

(associated with ANNS system design) of a workstation window management system,

such as the X Window System, as an example to illustrate the concepts of object-

oriented design. Figure 2 describes many object modeling constructs and shows

how they fit together into a large model.

Class Window defines common parameters of all kinds of windows, including

a rectangular boundary defined by the attributes xl, yl, x2, y2, and operations to

display and undisplay a window and to raise it to the top (foreground) or lower it

to the bottom (background) of the entire set of windows. Panel, Canvas, and Text

window are varieties of windows. A canvas is a region for drawing graphics. It inherits

the window boundary from Window and adds the dimensions of the underlying

canvas region defined by attributes cxl, cyl, cx2, cy2. A canvas contains a set of

elements, shown by the association to class Shape. All shapes have color and line

width. Shapes can be lines, ellipses, or polygons, each with their own parameters.

A polygon consists of an ordered list of vertices, shown as an aggregation of many

points. Ellipses and polygons are both closed shapes, which have a fill color and a

fill pattern. Lines are one-dimensional and cannot be filled. Canvas windows have

operations to add elements and to delete elements.

13

Window

x,yi x2,r-

display
undliplay
raine

Scrolling CanvasPae
-window--

1.offset ci1 cyI lina
cx2 ey2ry.-fe adomet vn went-

sall -dd-idesnent Pa enl

Window ~item kyorkeybor

elements

Shape label

color

Text Scrollding

window I coln
- --canvas

string LieClosedf
saeButton Choice Text item

rill color stigitem
inert rill patr depressed caxrlengtharn

draw ~~~(subset) -urnirn

current
choice coes~IC

Elfipwe -PolgonChoice
entry

r~y string

Figure 2. Object Model of Windowing System

14

Text window is a kind of a Scrolling window, which has a 2-dimensional scrolling

offset within its window, as specified by x-offset and y-offset, as well as an operation

scroll to change the scroll value. A text window contains a string, and has operations

to insert and delete characters. Scrolling canvas is a special kind of canvas that

supports scrolling; it is both a Canvas and a Scrolling window. This is an example

of multiple inheritance.

A Panel contains a set of Panel item objects, each identified by a unique item

name within a given panel, as shown by the qualified association. Each panel item

belongs to a single panel. A panel item is a predefined icon with which a user can

interact on the screen. Panel items come in three kinds: buttons, choice items, and

text items. A button has a string which appears on the screen; a button can be

pushed by the user and has an attribute depressed. A choice item allows the user to

select one of a set of predefined choices, each of which is Choice entry containing a

string to be displayed and a value to be returned if the entry is selected.

When a panel item is selected by the user, it generates an Event, which is a

signal that something has happened together with an action to be performed. All

kinds of panel items have notify event associations. Each panel item has a single

event, but one event can be shared among many panel items. Text items have a

second kind of event, which is generated when a keyboard character is typed while

the text item is selected. Association keyboard event shows these events. Text items

also inherit the notify event from superclass Panel item; the notify event is generated

when the entire text item is selected with a mouse.

2.2.3 Object-Oriented Design Process. Different authors describe differ-

ent steps to use in conducting an object-oriented design. What one author calls an

object-oriented design, another author calls object-oriented development or require-

ments analysis. Since many authors use a modified version of Booch's object-oriented

design process, his steps will be discussed in a later section of this chapter. This

15

section discusses a method described by Henderson-Sellers and Edwards which they

call an object-oriented development methodology.

Henderson- Sellers and Edwards describe seven steps used by Bailin in his

object-oriented requirements specification method. They state that these steps

could "obviously transcend the requirements stage well into detailed design" [10:1418].

Bailin's seven steps, as described by Henderson-Sellers and Edwards, are [10:148-1491:

1. identification of key problem space objects,

2. distinguish between active and passive objects,

3. establish data flows between active objects,

4. decomposition of objects into "sub-objects",

5. check for new objects,

6. group functions under new objects,

7. assign new objects to appropriate domains.

According to Henderson-Sellers and Edwards, Bailin sees the first three steps

as ones which are accomplished only once, while the other steps are performed it-

eratively. Henderson-Sellers and Edwards propose a "seven-point methodological

framework for object-oriented systems development- [10:149]. The steps, and a de-

scription of each follow [10:140-1501:

1. Undertake object-oriented systems requirements specification. "This stage is

high-level analysis of the system in terms of objects and their services, as

opposed to the system functions" [10:149].

2. Identify the objects and the services each can provide. This equates to the enti-

ties and their interfaces. "This is where the functional features will be defined:

although no indication of implementation is required" [10:150]. Henderson-

Sellers and Edwards propose that an object dictionary be established. The

16

visible interface is defined by identifying the objects, and the operations oil

the objects, as well as the services offered.

3. Establish interactions between objects in terms of services required and ser-

vices rendered. Henderson-Sellers and Edwards suggest that an entity-data

flow diagram (EDFD) or entity-relationship diagram (ERD) be used for this

step. They suggest that a better name for this diagram is an information flow

diagram (IFD).

4. Use of lower-level IFDs. This is where analysis and design merge. The lower-

level IFDs show "more internal details of the objects" [10:150]. From this step

on, bottom-up concerns should be analyzed.

5. Bottom-up concerns. During this step, objects are constructed from libraries

of previously used objects. Implementation of low-level classes begins.

6. Introduce hierarchical inheritance relationships as required. This step involves

determining whether there are any supcrclasses or new subclasses. Henderson-

Sellers and Edwards propose the use of an inheritance diagram to show the

inheritance relationships. They state that this step is needed to provide a

well-defined hierarchy so that future efforts can reuse the resulting structure.

7. Aggregation and/or generalization of classes. This step might require reviewing

and modifying the IFDs. Prototyping might begin at this stage. The identified

system classes can undergo another stage of development which Henderson-

Sellers and Edwards call generalization. "At this stage the components con-
tinue to be worked on until they are general, generic, and robust enough to be

placed in a library of components" [10:150].

2.2.4; Booch's Object-Orienled De.sqin Process. This section describes the

five sleps of Booch's design process as describe in his book, SoftwaIr(Cornponcills

17

with Ada 1131. Since other authors use very similar steps, it includes information

from various authors.

2.2.4.1 Identify the Objects and Their Attributes. This step involves

taking a narrative requirements document and extracting the nouns, pronouns, and

noun phrases [3, 6, 13]. Some objects may be similar to the other objects.

In this case, a class of objects is formed [4:48]. Once all the objects and classes

are identified, a decision must be made as to whether they will be kept or discarded

[13:44]. Just because an object is identified from the requirements document does

not mean that it should become part of the design and implementation [13:44].

Once the list of objects is refined, then the attributes of the objects should be

determined. "The attributes of an objected characterize its time and space behavior"

[3:17]. Jean and Strohmeier state that "these properties are given by the qualifiers of

the objects and classes within the informal strategy and by the additional information

found in the requirements analysis documezit" [13:-44]. EV1B Software Engineering,

Inc. states that these are the "adjectives and adjectival phrases" [3:2-8].

2.2.4.2 Identify the Operationis Suffered By anid Required of Each Ob-

ject. In this step, the requirements document is used to extract verbs, verb

phrases, and predicates [6., 13]. 1 hen, the extracted verbs, verb phrases, and predi-

cates are associated with a particular object [6, 13]. Jean and Strohmeier say "The

goal is to bind each operation to a single object or a single class" and that "no

operation should be left alone" [13:45].

"*The operations suffered by an object define the object's activity when acted

upon by other objects". 13y defining the op)erations required by an object. an attempt

is made to decouple objects friom one another. [3:17]

'Since Xlib and Xt of X window system are written in C !;nguage. Xve need to translate the
001) concepts of Ada implementation to the C language implementation.

18

During this step, a determination should be made as to whether the operation

is a selector, a constructor, or an iterator [13:451. A selector evaluates the current

object state; a constructor alters the state of an object; an iterator permits all parts

of an object to be visited [13:20].

2.2.4.3 Establish the Visibility of Each Object in Relation to Other Ob-

jects. As part of this step, a decision is made as to what objects "see" and are

"seen" by other objects [4:49]. The dependencies among objects should be estab-

lished [2:219]. This can be done diagrammatically by drawing each object and then

connecting the objects with a line to show the visibility between the objects [3:28].

EVB divides Booch's step into four substeps. The first substep is to decide on

how to implement the operations. Subprograms, packages, tasks, and generics are the

program units used to implement an object. The second substep formally describes

the interfaces among the objects. These descriptions can be textual or graphical. A

program unit which depends on another program unit must be compiled after the

first program. This substep helps determine the compilation order. EVB's third

substep is to create any additional objects and operations which are needed to help

the implementation strategy. These items are ones that were not identified as part

of the informal strategy but must be visible outside of the program unit. The last

substep is to produce graphical annotations to represent the formal strategy. The

diagrams give no indication as to how an object should be implemented noi do they

show much about the underlying implementation of the operations. The diagrams

serve as a map for the software engineer to follow throughout the rest of the design
process. [6].

2.2.4.1 Establish the Iltcrface of Each Object. This step is accom-

plished by writing a module specification for each object. Booch states that "this

specifcatioil also serves as a contract between the clients of an object anld the object

itself". [3:181

19

2.2.4.5 hnplement Each Object. This "involves choosing a suitable

representation for each object or class of objects and implementing the interface

from the previous step" [3:181. An object is implemented in C "as a structure set of

procedures and internal data" [35:342].

2.2.5 Advantages and Strong Points of Object-Oriented Design. Som-

merville describes the following advantages to OOD [42:205]:

"* Message passing eliminates the need for shared data areas for communication

between objects. Overall system coupling is thus reduced.

"* All state and representation information is kept within the object itself, making

the object an independent entity that may be readily changed. Objects can not

access information on other objects either deliberately or accidentally. Changes

may be made without reference to other system objects.

"* Objects may execute either in parallel or sequentially. They may also be dis-

tributed. The decision as to whether parallelism should be used does not need

to be made at an early stage of the design process.

Korson and McGregor describe seven ways in which object-oriented design

provides support for a good design.

1. Modularity. Classes become the modules. "This means that not only does the

design process support modularity, but the implementation process supports

it as well through the class definition". [18:50]

2. Informatioiz lliding. "Tihe class construct supports information hiding through

the separation of the class interface and the class implementation" [18:511. This

separation permits the class specification to be mapped to various implemen-

tation and means some maintenance can be accomplished without the user's

knowledge [18:51].

20

3. Weak Coupling. Object-oriented design supports weak coupling [18 :5 1]. Since

classes are designed a-s a collection of objects and the operations on those

objects, the "interface operators of a class are inward-looking in the sense that

they are intended to access or modify the internal data of the class" [18:51].

This leads to less coupling which is desirable.

4. Strong Cohesion. Strong cohesion is desirable and supported by object-oriented

design. Korson and McGregor state that "a class is a naturally cohesive module

because it is a model of some entity" [18:51]. Functional cohesion is desirable

form of cohesion. Booch defines it as cohesion "in which the elements of a

class or module all work together to provide some well-bounded behavior"

[5:124). OOD supports functional cohesion. The fact that OOD makes use of

inheritance does not mean that the cohesion is weakened since both the data

and functions which are inherited from another class form a natural group

[18:51]. These natural groups are "brought together to represent one concept"

[18:51].

5. Abstraction. Object-oriented design supports abstraction. Booch defines ab-

straction as "the essential characteristics of an object that distinguish it from

all other kinds of objects and thus provide crisply-defined conceptual bound-

aries relative to the perspective of the viewer" [5:512]. Korson and McGregor

discuss two types of abstraction which support OOD: abstraction by specifica-

tion and abstraction by parameterization [18:51-52]. Abstraction by specifica-

tion separates the specification of an object from its implementation [18:52].

"Abstraction by parameterization abstracts the type of data to be manipu-

lated from the specification of how it is to be manil)ulated" [18:52]. Seidewitz

and Stark state that there is a "spectrum of abstraction" including entity, ac-

tion, virtual machine, and coincidental abstraction, which in conjunction with

information hiding, provide the main guidance for defining objects [38:4-57].

Entity abstraction, which is the best level, is where an object "represents a use-

21

ful model of a problem domain entity" [38:4-57]. Action abstraction is where

"an object provides a generalized set of operations which all perform the same

kind of function" [38:4-57]. Seidewitz and Stark describe virtual machine ab-

straction as the case in which "an object groups together operations which are

all used by some superior level of control or all use some junior level set of

operations" [38:4-57]. The worse level of abstraction is the coincidental. This

level of abstraction is defined as where "an object packages a set of operations

which have no relation to each other" [38:4-57].

6. Extensibility Object-oriented methods are "easily extended" [18:52]. Inheri-

tance supports this in two ways. First, because inheritance permits "the reuse

of existing definitions to ease the development of new definition" [18:52]. Sec-

ond, the polymorphic property also supports extensibility in designs [18:52].

7. Integrable. Designs produced by OOD "facilitate the integration of individual

pieces into complete designs" [18:52]. This includes both the use of classes and

objects [18:52].

Booch discusses coupling, cohesion, sufficiency, completeness, and primitive-

ness as means of determining that a design is good. Coupling and cohesion were

discussed above. By sufficiency, Booch "means that the class or module captures

enough characteristics of the abstraction to permit meaningful and efficient interac-

tion" [5:124]. Completeness means "that the interface of the class or module captures

all of the meaningful characteristics of the abstraction" [5:124-1251. Completeness

is a subjective matter and should not be overdone. Primn:tiveness implies that an

operation can be implemented if the developer is given access to the underlying

representation of the ADT. [5:124-125]

2.2.6 Object-Orien Ied Design and Simulation. "The object-oriented design

of simulations is based on the concept of abstract data types" [5.5:123]. Object-

oriented techniques lend themselves to simulation bccause the "things" which should

92

be modelled are objects and what each of the "things" can do are the operations on

the oljects f31:2718], This defines arn abstract data type. Roberts and Heim state

that an "object-orlented design attempts to bridge the gap between the model and

what is modeled" [31:278]. They also state that "division into classes, recognition

of methods, and the organizations of hierarchies from the basic approach to object-

oriented modeling" [31:279]. Methods are the operations performed on an object.

One benefit of an object-oriented simulation system is the focus on objects.

Focusing on objects provides both data abstraction and information hiding which

help to modularize the system. This "stimulates the user to identify the principal

components of a system and to specify their behaviors and interactions". [31:279]

Another benefit of an object-oriented simulation is that existing models can

form the basis for new models. By using overloading and inheritance, old objects

can take on new meanings. [31:2801

The resulting amount of codc generated using object-oriented simulations is

lecs than using traditional approaches. This makes it easer to manage the model

and also permits models to be larger and more realistic. [31:280]

Objects provide a natural starting point for concurrency [31:280]. Concurrency

permits more than one object to be processing at the same time as long as the objects

do not need to communicate with each other.

2.3 Graphical User Interfaces

The user interface is the component of the application through which the user's

actions are translated into one or more requests for services of the applications, and

that provides feedback concerning the outcome of the requested action [25]. The

design of efficient ard easy to use interfaces is receiving increased attention these

days. Most people now realize that if an application has a user interface that is

".unfriendly" or difficult to use. it is probably going to sit on the shelf unused.

23

2.3.1 User Interface Design. While much has been written recently

on the subject of user interface design, it is hard to define exactly what is meant

by a "good" user interface. Often, the closest one can come to a definition is an

enumeration of qualities a user interface should have. Accordingly, it is not easy to

design a user interface. Brad Myers describes user interface design as more of an

art than a science. However, he does list some things to consider when producing a

design [24]:

e Learn the application. In order to determine what data to display and how best

to display it, the designer must have a good understanding of the functionality

of the system. This is often one of the most significant steps in interface design

as a poor understanding can be difficult to overcome once the design progresses.

* Learn the user. The designer must determine the skill levels of the intended

users, their backgrounds, and the amount of training likely to be needed.

* Learn the hardware and environmental constraints. Is the system going to be

run on a particular type of machine ? Will special input or output devices,

such as mice, terminals, or plotters, be used ?

e Evaluate similar products. The designer should study the user interface of

similar systems and of systems in the same environment.

* Determine the support tools. There are many toolkits available to assist in

the design and implementation of user interfaces. Also, user interface man-

agement systems (UIMS) are becoming more popular as a means of increasing

productivity in the user interface design.

* Plan to incorporate Reset, Quit, and Help from the beginninig. It is very difficult

to try to add these functions after the system is under development. The nature

of the actions impacts the design of the application's data structures.

24

"* Separate the user interface from the application. The user interface and the

application should be modularized with design of the former being based on

the functionality of the latter.

"* Design for change. The user interface will change more than the functionality

of the application. These changes frequently will be based on customer reaction

to the delivered system.

Two of the items in the above list deserve a broader discussion. These are the

support tools and the separation of the application from the interface. As previously

mentioned, the two major types of tool for user interface design are toolkits and

user interface management systems (UIMS). One problem with toolkits is that it is

often difficult to determine what part of the toolkit to use to perform a particular

function. Furthermore, since the work must be done over and over with each new

application, consistency between systems is in jeopardy [17]. UIMS, on the other

hand, are designed to aid in "rapid development, tailoring and management of the

interaction in an application domain across varying devices, interaction techniques

and user interface styles"' [20:33]. This may include such things as handling user

errors, providing helps and prompts, and validating users inputs.

Separating the user interface software from the application software has many

attractive benefits. Typical user interface design consists of one or more prototypes

offered to the user for review. The user then evaluates the interface and offers

suggestions for improvement. If the application and user are closely interwoven the

user interface designer may have difficult making the suggested improvements. The

job can be much easier, however, if the functionality of the application is separated

from the user interface. Pedro Szekely lists the following benefits of minimizing

dependencies between the application and the interface [50;45]:

• The user interface can be packaged into components that can be reused in

other interfaces.

25

"* The user interface can be changed without impacting the functionality.

"• Multiple user interface can be developed for a single application, each one

tailored to a different class of users, or to a different set of input and output

devices.

" The functionality of an application can be called from another program directly,

without simulating the input required by the user interface.

" The user interface can be specified by means other than programming, for

example, by interactively drawing and demonstrating how the interface should

behave.

2.3.2 User Interface Characteristics. Whatever design method is used,

effective user interfaces frequently have certain qualities. Brad Myers lists the fol-

lowing attributes of so-called "good" user interface [231:

* Invisibility- The user interface should be transparent to the user, such that the

user has the sense that he is directly manipulating "real" objects on the screen.

The user interface should not interface with the operator's concentration on

the task being performed.

* Minimal training requirements: No more than one hour of training should be

necessary before the user can be productive on the system.

* High transfer of training: The system's appearance and performance should be

similar to other systems dealing with the same subject matter. This external

consistency between systems will help reduce training times when switching

from system to system.

* Predictability: The objects and operations should perform similarly across con-

texts of the system. This internal consistency leads to a system where user can

anticipate how the computer will behave.

26

* It is flexible: The user interface should allow user to operate in the manner

with which they are most comfortable. Users should be able to customize

certain attributes to their own style and taste.

2.3.3 User Guidance . User guidance refers to system documentation,

the on-line help system, and messages sent as a result of user actions. This is an

area that does not always receive the attention it deserves. However, it should be

considered at every stage of interface design because of the significant contributions

it can make to effective system operation [41]. According to Smith and Mosier,

The fundamental objectives of user guidance are to promote efficient
system use (i.e., quick and accurate use of full capabilities), with minimal
time required to learn system use, and with flexibility for supporting users
of different skill levels. [41t291]

Often, the first impression a user gets of a system is from error messages [42].

Thus, the interface designer should make an effort to write error messages that

are both polite and constructive without being offensive. When possible, the error

message should suggest how the user might recover from the error. Also, the user

should have the option of getting a help message to give insight as to the cause of

the error.

It is difficult for an interface designer to anticipate the level of help users will

need. To accommodate all types of users, the help system should provide different

levels of help. When the user first requests help, the system should provide a brief

overview of the topic and give the user capability to request a continuation of the

help. Each successive level of help would give greater detail on the subject [54].

2.4 The X Window System

User interfaces using some type of windowing system are fast becoming a com-

mon feature of most computer systems. As a result, users tend to expect all appli-

cation programs to have a professional, polished user-friendly interface. [59] The X

27

Window System provides the mechanism to achieve this goal as well as many others

described in the previous section.

The X Window System, or X, is a device independent, network transparent

windowing system that allows for the development of portable Graphical User Inter-

faces (GUis) [28, 37, 27]. It was developed in the mid 1980's at the Massachusetts

Institute of Technology (MIT) in response to a need to execute graphical software on

several different types of different workstations. Robert Scheifter of MIT and James

Gettys of Digital Equipment Corporation (DEC) developed X with the primary goals

oY portability and extensibility [37]. Another major consideration was to restrict the

applications developer as little as possible. As a result, X "...provides mechanism

rather than policy"' 1I4:xvii].

To achieve the goals, the X Window System relies on the fundamental principles

of network transparency and a request/event system. Software toolkits are then

layered on top of the basic system to provide an easier programming environment.

2.4.1 X Window System Principles.

2.4.1.1 Network Transparency . Oliver Jones describes network

transparency as the capability for X application programs running on one CPU

to show their output and receive their input "...using a display connected to ei-

ther the same cpu, or some other cpti"[15:4]. The X Window System achieves this

transparency usingr a client-server model. In X, each workstation that is to display

graphical information(i.e.,windows or their contents) must have ai process called the

X server. According to Douglas Young, the X server "...creates and manipulates

windows on the screen, produces test and graphics. and handles input devices such

as a keyboard anid mouse" [59:2].

The core of the X system is the server. The server allocates and manages

all the necessary data structures required to support a screen. There is one server

28

per cpu, but a server can manage more than one screen (analogous to a file server

with diskless clients). Applications programs using the server are known as clients.

Any application which complies with the X protocol (an asynchronous byte-stream

protocol) can communicate with the server. Obviously, a server can connect to many

clients, but a client can also connect to more than one server. A client and server

need not be on the same machine, or even the same network.

The server provides the device independent interface to the platform on which

;t resides. A specific version of the server must be installed for each platform. For

example, in a networked workstation environment, each workstation has a tdevice

dependent server running in the background controlling the screen.

Clients and servers use the X protocol to communicate with each other over a

network. As figure 3 shows, many clients can connect to a single server. Although

not shown. a clieht can also be sinultancously connected to several X servers. In X.

the client(s) and server can reside on the same physical machine, or they may be on

the separate machines.

2./t.1.2 Requests and Events. The network protocol mentioned in

the last section is the method with which clients and servers communicate. This

section discusses the mechanisms used to carry out the communication. The clients

and servers communicate with each other by sending requests and event notifications,

respectively.

When a client wants to perform some action on the display, it communicates

this desire hy issuing a request to the appropriate X set ver. Young states:

Clients typically request the server to create, destroy, or reconfigure win-
dows. or to display text or graphics in a window. Clients can also request
information -)bout the current states of windows or other resources. [.59:-ll

'The X server, conversely, communicates with the clients by issuing event no-

tifications. Event notifications are sent in resp)onse to such user action as moving a

29

Client Client Client

Network

X Server

Keyboard7 Terminal Mos

Figure 3. The X Client-Server Model

mouse into a, window, by pressing a mouse button. or pressing a key on t he keyboard.

The X server also sends event notifications when the state of a window changes [27}.

Applications programs act. on these events by registering callbacks with the X Win-

dow System. A callback is simply a procedure or function that is to be executed

when a specific event occurs.

Because of the reliability of the network, events and requests are sent asyn-

chronously and data can be sent in both directions simultaneously [36]. This con-

figuration makes for faster communication since the clients can send requests at any

time and need not wait for an acknowledgement. The protocol guarantees the mes-

sages will be received in the proper order. Furthermore. there is no need for clients to

continuously poll the server for information. "'Instead, clients use requesto to register

interest in various events. and the server sends event notifications asvnchronously"

[36:xviiii.

30

2.4.1.3 Basic CotrnponlenIs. The X Window System was designed

to provide the mechanism for the application program to control what is seen on

the display screen. The programmer is not constrained by any particular policy.

These mechanisms are embodied in a library of C functions known as Xlib. The

Xlib routines allow for client control over the display, windows, and input devices.

Additionally, the functions piovide the capability for clients to design such things as

menu. scroll bars, and dialogue boxes. Most X application programs make use of a

slrecial client program called window manager. The program utilizes the mechanisms

of Xlib to relieve the application program of such tasks as moving or resizing windows

[:36). Brad Myers writes that a window manager helps the user monitor and control

different activities bI) physically separating them into windows on the comnputer

screen [22].

Figure -1 represents the most basic X environment. In this diagram, an ap-

plication proigram and a window manager operate as sel)arate client. connected to a

single server.

2.4.2 Toolkits. While application programmers can use the Xlib routines

to accomIplish any task in X, many find the low-level routines tedious and difficult

to use. To simplify the development of applications programs, many toolkits have

been developed. Toolkits (an be viewed as libraries of graphical programs layered

on top of Xlib. They were designed to hide the details of Xlib, making it easier to

develop X applications. [261

There are several toolkits available today. Some of the better known ones

include: the X Toolkit (Xt) from MIT, the Xlib Toolkit (Xr) from Hewlett-Packard

(lIP), Open Look and X\'iew from Sun Microsystems. and Andrew from Carnegie

Mellon University. Of those listed, Xt is one of the most popular [30]. Along with

Xlib. it is delivered as a standard part of the X window System,

31

Client Client
Application Window

Program Manager

Xlib Xli)

NetworkI

X Server

z Keyboard 7 Terminal Mos

Figure 4. Basic X Environment

Xt is an objected-oriented toolkit used to build the higher level components

that make up the user interface [:301. It consists of a layer called the Xt Intrinsics

along with a collection of user interface components called widgets. Widget sets

typically consist of objects such as scroll bars. title bars, menus, dialogue boxes and

buttons. In keeping with the X philosophy, the Xt Intrinsics layer remains policy

free. As such, it only provides mechanisms that do not affect the "look and feel'

(outward appearance and behavior) of the user interface [59]. These mechanisms

allow for the creation and management of reusable widgets. It is this extensibility

along with its object-oriented design that makes the X Toolkit attractive to iser

interface designers.

It is the programmer's choice of a widget set that determines the high-level

"look and feel" of the uscr interface. Just as there is no "standard" toolkit, there are

many different widget sets supported by Xt Intrinsics. However, as Young writes,

32

Application Program (C Language)

Widget Toolkit (Motif, etc.)
"(C Routines)

Xt Intrinsics (C Routines)

Xiib (C Routines)

X Server

Keyboard7 Terminal Mos

Figure .5. Typical X Windows Configuration

--...from an application programmer's viewpoint, most widget sets provide similar

capabilities" [27:12]. Somne of the more popular widget sets include the Athena

widget set from MIT, the X widget set from liP, and the Motif widgets from the

Open Software Foundation.

Structurally. the Xt Intrinsics is built on top of Xlib. The XView widget set,

in turn, relies on the function, provided by the Xt Intrinsics. A typical application

program may make calls to the widget set, the Xt Intrinsics, or Xlib itself during its

execution. This configuration is illustrated in figure 5.

Many user interface designers elect to design their own widget sets. Some

do it for the challenge. Others design their own widgets out of necessity. A user

interface designer may have a need for a special widget not provided by any axailable

widget sets. However, designing custom widgets decreases the portability of the user

interface code and of the application code in general [9].

33

2.5 Thc current status of the NeuralGraphics

The NeuralGraphics system was designed for the Silicon Graphics IRIS work-

station and written in the T' progf|amming language. The environment includes

demonstrations and applications of Kohonen mnappings, multi-layei feedforward net-

\% orks using backpropagation. hybrid (joint supra vised/unsuperx ised) training pcu ddigms.

radial basis functions, hopfield associative memory, error surface analysis and net-

work topology analysis. The NXuralGraphics software package consists of indepen-

dent programs run from a common mienu. The progranms are selected friom a slill or

script program which calls the individual programs. Each program is independent

and is run as an execution file from the script program. This section will discuss the

modules which make up the NeuralGraphics package. [51]

2.5.1 Basic Structures and Design Considerations. Each of the neural

networks of the A\;cura/Graphicb, package is composed of a number of independent

software modules. In addition to the basic modules, a graphics tool box is provided,

which is specific to the Silicon Graphics IRIS svstem.

At the highest level of abstraction, a neural network simulation consists of two

loops: the network loop which is controlled by the programmer, and the event loop

which is usually associated with the hardware. The event loop is the hardwaie and

software structure which watches the input devices, i.e. keyboard and mouse for

activity.

The neural network loop consists of: a routine to select. the input vectors,

a propagation algorithm to feed the vector through the network and comlpute the

output of all the network nodes, a training routine' for modification of weights. a

graphic-display function and an analysis routine for periodic testing.

The event loop is concerned with the hardware and monitors the keyboard

for the keys being pressed or the mouse being moved. This loop allows tile user to

34

change the flow of control in the training process to for such functions as saving the

weights, changing the network topology, or eliminating nodes.

Outside both loops is an important lower level modules which includes tile ini-

tialization procedure for the graphics hardware and aun event dri\ en menu to control

the training and operation of the network.

In pseudo-code the general flow of the network is shown below [51]:

begin
INITIALIZE
loop {

MAKE-INPUT
PROPAGATE
TEST
TRAIN-NET
DISPLAY-NET
Event Handler}

end loop
end

2.5.2 Objects and Operations. The OOD design of NAeuralGraphics pack-

age was done by creating two types of software elements: objects and operations. The

NET object is made up of a number subobjects, some obvious, like layers, nodes, and

weights, and some not so obvious, like pointers to propagation and training rules,

and connection information [51]. In parallel to the objects are the operations, or

those procedures which act upon the objects. In this case, the net can be di'splaycd

or a layer can be propagaled, updated, tested etc.

The procedure uses an object in the form of a, data structure: a network and
an array of layers.

typedef struct{

int layers;
float *input;
float *output;
float *desired-output;
short *out-mask;

:35

layer *layer[1O];
} NET;

NNET contains variables to declare its inl)ut, output. desired output and an

array of layers. Layers are a substructure to NET [511.

typedef struct{
int size-input, size-output;
float *input;
float **weights;
float *mask, *outmask;
float *output;
float *theta;
float *delta;
float **momentum;
void (*update)();
float (*propagate) ();
} LAYER;

The NET object was made up alnost entirely of pointers. The only element

that is actually stored in the NET is the actual number of layers.

2.5.3 [nitializalion AModales. The initialization routine has two functions.

The most imlportant is the establishment of the network in memory. In addition,

the weights. and thresholds are filled either by a randoin nuniber generator or by a,

stored file from a previously trained net. The second function is the equiplment check

to determine the nature of the graphic displays and to initialize the video drivers

as necessary. The size of the screen, color planes, and graphic capabilities would

determine exactly how much data, can actually be displayed. [51]

2.5.4 Thc A16ai1 Program Loop . The main 1prograin loop consists of the

MAIKEINPUT module. the PROPAGATE module, the TRAINNET module. the

TIESTNE"T and the I)ISPLAY and SHOW modules. A counter was used to inhibit

the calling of some modules through the loop to reduce computations. For example,

36

the screen may be updated only every few hundred cycles. Each l)ass through the

loop represents one training cycle, so MAKEINUT[. PROPAGATE, and TRAIN-

NE'Tr will alwavs be called.

2.5.4.1 Make (m Input Vector and Desired Output Veclor. A set of

input patterns and a defined classification, are essential to the training of a heumal

net. In other words. an input vector and a desired output (doft) are needed for every

update cycle.

2.5o4.2 File Input of Erainplar Sets. Most problems can be de-

scribed in terms of a set of input vectors and a defined classification. An exemplar is

selected randomly from the pool whenever the MAKEINPUT routine is called. The

routine should ensure that in addition to random selection of an exemplar number,

there is also random selection based on class type. This prevents excessive training

on a single class, when the classes are not evenly distributed in the input file.

2.5.4.3 Propagating the Input Vector . With the organization of the

net in memory, the net can begin to learn and classify data.. To use the net, the

rules for propagating the data from the input to the output must be specified. This

is the purpose of the Propagate package,

The feedforward routine is really only a hook to the real feedforward method,

pointed to in the layer data structure. The function pointed to in the laycir data

structure only update one node. So, the feedforward routine will loop through all

the nodes.

2.5.4,1 Updating the Weights. The TRAINNET module specifies

the training algorithm for the network. It is only a hook to the real update routine.

Because the update of a particular node may depend on all nodes in a laver, the

update routine will update an entire layers weights.

37

2.5.4.5 Measuring the Error. Network performance is evaluated in

two ways. First, training is periodically stopped and a test set is evaluated. The

second method checks the performance after every training cycle against the current

training vector. For a. general evaluation of the neural net performance, a set of

training data is run through the net without training cycles between tests. For a

more specific analysis, using a data set different than the one used for training, can

show the validity of the feature set used to classify the targets. The TEST routine

allows this type of checking mid-process by running a quick test set through the

net, then measuring the performance. The test set is specified in the initialization

routine. When the data is read into memory during initialization, the first line of

the file specifies the number of training exemplars followed by the number of test

exemplars. This partitioning of the data allows the TEST routines to test the net

with a set of vectors the net has not seen before.

2.5.4.6 Displaying the progress. The display routine refers only

to the graphics portions of the display. This includes such functions as drawing

the network weights, drawing the nodes, setting the colors, finding data ranges,

and drawing color bars. The package is split into two types of graphics routines.

The basic set contains those functions that are machine dependent. In general,

a macro is used when possible to allow for redefinition to other machines. Those

which are not machine dependent are combinations of the basic routines that are

machine dependent. An example would be the color bar routine. These two types of

routines are included in the graphics package. In general, when the problem under

considleratio changes ftora sonmething like a Kohonen map to a counterpropagation

model, the entire display package is replaced.

2.5.4.7 Interactive Prograim (ontrol. An event-driven menu pro-

vides control for housekeeping functions of the network. Event driven menus require

a hardware event to call the menu subroutine. No device polling is necessary. The

38

event, in this case, is typing a control C on the keyboard and is detected using

signal.h . A control C activates a hardware interrupt to kill address vector., The

program has substituted the normal kill address vector with the menu address vector.

While the main purpose of the menu is to allow user to save and restore weights,

the menu also allows control parameters to be changed while training is in progress.

A menu display in a text window offers a series of selections. Selection of a particular

item will then prompt the user of the parameters associated with the particular call.

2.6 Summary

This chapter consisted of a literature review in the areas of objected-oriented

design, graphical user interface, X Window System, and the current status of Neural,

Graphics software package. In the first section, Object-oriented design was defined

and various concepts described. The key terms in object-oriented techniques are

object and class. An object is something which can be changed. It has behavior,

state, and identity. When objects have a similar structure and behavior they are

often grouped into classes. Another term defined was inheritance. C language, which

was used to implement ANNS, does not support inheritance. Two object-oriented

design processes were described, including an in-depth description of Booch's pro-

cess. The research conducted showed that the process, as described by numerous

authors, is basically the same. The first step is to identify the objects and group

them into classes. At the same time as objects are identified, the operations which

those objects require can be determined. As with other design techniques, an object-

oriented design process should be an iterative one. This section also described some

of the advantages and strong points of object-oriented design. Object-oriented de-

sign techniques provide the implementer with an easy way to follow sound software

engineering principles. Object-oriented design techniques provide a modularized sys-

tem which permits easier maintenance of the actual code. A good object-oriented

39

design ensures weak coupling and strong cohesion as well as supported abstraction.

These are all very important software engineering principles.

The review of graphical user interfaces identified some of the desirable qualities

of user interfaces. This section discussed "how" a user interface should be designed

so that the users will feel comfortable with the system and can be more productive.

Then, an overview of the X Window System and its extensions was presented. The

X Window System is a tool user interface designers can use to construct profes-

sional, and hopefully, user-friendly interfaces. Lastly, the original software design

and data structures of the NeuralGraphics package were described. This section out-

lined the major software modules which make up the NeuralGraphics environment.

The following chapter will present the requirements analysis and specification for the

development of the ANNS system.

40

III. Design Methodology, System Requirements Analysis and

Preliminary Design

3.1 Introdiction

This chapter presents system requirements and preliminary software design for

ANNS - The AFIT Neural Network Simulator. Before work can proceed on any

project an outline guiding the development of this work must be produced. The

software design methodology of ANNS system is presented in the first section of this

chapter.

3.2 Design Methodology.

An important part of any software development project is the overall model or

methodology for accomplishing the task. The methodology outlines the steps to be

taken from inception through implementation to retirement. It provides an organized

approach to software development and allows for management of the development

effort.

3.2.1 Current Methodologies. Currently, there is no one standardized

methodology being used for software development. Unless a method has the flexibil-

ity, it is doubtful that any particular one will be perfect for all software development.

However, some organizations have adopted one method over the others and tend to

force all software development activities to follow the adopted mode. Some of the

more popular methodologies in use today include:

* Classic Life Cycle (Waterfall)

* Evolutionary (Prototyping/Interactive)

* Program Transformation

* Spiral Model

41

-me classic Li1e cycle paradigm calls for a systematic approach to software

dlevel opm en t. The step in this app)roach include (see Figur'e 6) [4121:

"* lHquircnenl-s analysils andl dfiwilon. The system's services. constraints, and

goals are estab~lishedl and defined.

* -Sylu and sýoftwari dcsignl. Using the requirements, definition as a base. a dcl-

sig~n is clraý% ii up of thic svysteni t hat call be readily transformedi into a computer

programl.

"* Imphim iala/on and unit tcslihny. The software designi is transformed into soft-

ware Units. These units are tested to verify that they mecet the specificatilolls.

* Sys/un /cs/ing. 1Liiis are int egratedl and tested as one Complete unit. After

the testing is compl)eted andi successful, the software is dleliveredl to thle user.

"* Ojmi'a/on and ,nain/cnanc(. The soft ware is inst alled and~ put.t into u-se. Mlain-

tenance oc-curs throughout the system Ii fecycle.

InI actual practice these phases are ram ely (distinct.; they canl overlap and feed

off each other. A major problem with this app~roachm is that thme systemn development

rarely follows the seqUential flow. Itemlation always occurs andl creates problems

because It is dlifficult to determinle the pro ject's progress. Anotheit major p~roble-mn is

that it is often dhifficult for the user to state all the iequiretnents uip front. Themefore

tLne general consensuts was that the Classic Life Cycle model dloes not lend to itself

well to the design of user interface s, tystem. This is particularly dune to the limiit ed

dlialogue lbet wecni developer alldI user once the le~sigmi stai ts. On thae other hiand,

prot~otypimig provides, a bmildge to conimunilcate withi the usel to beAtte (lete nmilue the

system redj;1'illreents andl to help1 prxevent designing the wronig syýst~em.

The pr1ototx pi mig, 1)aradligml call be used when the user dloes not have- a d om plet e

set of requ I remnients'. All Iitmit al systeim. which may lack any suppomit processing, is

developed bý thle desigmiem s to demonsi rateý to t he us('i that thel(pm o cct is feasible.

Thmis imni tial svstemi can take- three forms [;291:

12

Requirements
Analysis &

Definition

System &
Software
Design

Implementation

and

Unit Testing

System

Testing

Figure 6. "IThe Classic Life Cycle Model

4.3

"* A paper prototyl)e that depicts human-inachine interface in a form that user

can understand.

"* A working prototype that imlplements some subset of the system.

"* An existing program that emulates part of all of the functions desired but needs

to be improved upon for this developlnent effort.

This approach. like all others. starts with requirements gathering. After this initial

phase. a qpick dlgslgn follows which focuses on those aspects of ,the system that will

be visible to the user. This quick design leads to the development of a prototype that

is evaluated and refined: a process of iteration which continues until the system fits

user requirements. For the ANNS system development using this model, there are

some existing programs that emulate part of all of the simulation functions desired

but needs to be improved, such as neural network algorithm functions in Vtural-

Graphmcs system and X window graphical user interface protocol in some existing

simulation system. However. prototyping does have some problems such as reliabil-

itv. robustness. and safety that cannot be adequately expressed. Still, the ANNS

graphical user interface is a prime candidate for prototypilg. because it depends on

visual displays and heavy interaction with the user [291.

The Iterative design paradigm has the primary advantage that a working sys-

tem is produced at each iteration. Thus. user interface capabilities and improvements

can be incrementally added to the system. The key point to this methodology is

that the system is broken down into small manageable pieces, which are prioritized,

and implemented one at a time. This is attractive for this effort because of the time

constraints involved. A workable neural network simulation subsystem and graphical

user interface are developed at each stage and are ready for implementation.

The Program Transformation methodology is emerging as an attractive alter-

native to program generation. In this paradigm, a formal specification of the systemn

requirements is produced. This formal specification is then automatically trans-

I14

formed into svntacticallv correct code. Some human intervention may be required

to assist in the transformation. The generated code is then validated against the

user-s requirements. If the system must be modified. then the adjustments are made

to the formal specifications and the process is repeated. \With this method, there

is no design stage. Since a large part of user interface generation is developing the

screen layout, this system is not the most desirable. This is because many graphical

screen designs can be produced from the same set of requirements.

The Spiral Model is a risk-drix en approach to the software development process

[1]. In this methodology, the following steps are repeated until the program is fully

developed.

1. Determine objectives, alternatives, and constraints.

2. Evaluate alternatives.

3. Identify and resolve risks.

4. Develop and verify the next-level pLoduct.

•5. Plan next phases.

Depending on the identified risks, the fourth step listed above may use the

classic life cycle, prototype. iterative. or transform approach. Barry Boehin writes

[1:651:

The spiral model also accommodates any appropriate mixture of a
speci fication-oriented, prototype-orientedl, simulation-oriented, automatic
transformation-oriented, or other approach to software development, whete
the appropriate mixed strategy is chosen by considering the relative mag-
nitude of the program risks. and the relative effectiveness of the various
techniques in resolving the risks.

3.02.2 Thc Mdhodology Dccision. It is sometimes the case that no one

methodology is best for a sofl ware design project. For ANNS system development,

45

Anal) sis

5Rqirmnitsa
Prototype

DevelopimentItrio n

Peliminary

Designn

It[ration 2

Figure De.ignNS Desin Mesthodolotigy

(4nc- (Coe

a hybrid paradigm which combines the best characteristics of the classic life cycle,

prototype, and iterative methodologies was used (as figure 7).

The first step involves an explicit requirement analysis phase before developing

the initial prototype. Before jumping into a software design. the software engineer

should have an understanding of at least the fundamental terms and concepts of the

problem domain. If the software engineer has curivlt experience in the domain area,

this step may be omitted. However, if the designer has little or no experience or if

recent advances have occurred in the field, a study or review of current topics shouhl

be conducted. Accordingly, the domain analysis conducted for this ANNS system

consisted of:

"* Reviewing recent technical reports in the areas of neural network simulator.

"* Reviewing recent thesis efforts in the areas of designing graphical user interface.

* Conducting a literature review in the areas of algorithm animation and X

window system.

After conducting the domain analysis, initial prototypes were developed. These

considered of sample screen layouts to show the expected behavior of the ANNS

system. The prototype stage was followed by an object-oriented high-level design of

the overall user interface.

After finishing the preliminary design and before conducting the detailed design

for each iteration, an evaluation and planning stage was conducted. This consisted

of evaluating various alternatives for implementing the next portion of design. Foi

each alternative, the expected benefits and risks were weighed. In addition, aniy

constraints placed on the user interface were considered for possible impact. A plan

was then developed for" in•plementing tlhe selected alternative in a manner that would

maintain or enhance the object-orientedness of the overall design. Effobts weie made

to reuse as many components as possible while maintaining high cohesion and low

coupling between modules and iterations. Using the alppropriate plan and fuictional

417

decomIposition, a detailed design was created. This, in turn. was used for generat ing

the code for the given iteration. Unit testing was then perforimed on the individual
module to ensure the proper functionalitx was achieved. An time a major change

or modification is made to a piece of softwaie, there is the possibility of introducing

errors into previously correct code. Thus, unit testing was followed by regression

testing to ensure the newly added module (lid not adversely affect the functionality

of previously written modules.

After the last iteration was completed. the end-user and client--programnmer

usci inteiface software were integrated with neural network simulation softwame to

form ANNS system on the Sun workstations.

3.3 System Rcquiremcnts Analysis.

\Vhile the design model provides the 'How' for ANNS system development, the

requirements analysis gives the development the -What'. This section presents the

system requirements analysis for ANNS. Since the goal of this effort is to establish

an integrated and unified neural network simulator system, using the ANNS sys-

tem overview model (Figure 8 is an idealistic abstract model) as a starting point,

the analysis is conducted from two points of view: the end-user and the client-

programmer of the ANNS system.

Based on the results of the literature review, the structured analysis methodol-

ogy of Edward Yourdon [601 was used and the enumerated requirements specification

were compiled.

The idea behind structured analysis is to reduce the complexity of a problem

by hieratchically decomposing the problern into pieces that can be more easily tin-

(lerstood. The decomposition can be based on data or processes (methods) and is

reflected through a set ies of f,:,,tclion diagram-,. Each functional didgram illust.iates

one level of lhe decompo-sition. Vigure 9 shows the highest.-level object functional

diagram for ANNS.

IS8

Paradigm Paradigm
Class #1 Claw Af

Inputs Inputs

NN Paradigm Library NNAlgorithms Algorithms

Graphical Graphical
Views Views

I NNS Systemt

Environment Manager Library Manager

77ient-Programmer
EndUsr nterface Itrfc

Figure S. The ANNS System Overview

'19

A process is presented by a circle on the fiunctional diagramn. The process namne

andl number' appear in the circle. The process fulfll)Cr provideb a means for tracino

through the hierarchical deccomposition. Intecrfaces bet ~ccii processes aie relpresented

by arrows entering or leaving prlocess circle. The arrows relpresent dati JWlIroltle1 by

or needed by a process.

Client-Programmer Inputs

End-User Inputs ()WoktinOups

Functioiial Model Level 0 TITLE: ANNS Systemn

Figure 9. The Top-Level Object, Functional Mlodel of Design for ANN.S System

3.3.1 EAnd- User Requirenenids A nalysts. The end-uset' of AINNS system-

should lbe able to customize the simulation environmnent. Multiple Neural Network

(N'\N) algorithmn windows, with multiple views of the neural network algorithmn in

execution should be possible. Thle user sihoutld control the position and size of NN

algorithm windows and views. The user can close NN algorithi'l windows at any time.

Likewise. a neural network algorithim windlow's contents may lbe replace(] at any time.

.50

The user may control each simulation window individually or control all windows

simultaneously. In either case, controls aNailable to the user are: stairt or continue a

simulation, restart or reset a simulation, pause or terminate the simulation, single-

step the simulation. and control the speed of the simulation. The simulation system

may be exited at. any time.

Neural network algorithm windows must provide a mechanism for monitoring

and modifying the input parameters. In addition t. the view windows, every neural

network algorithm window should support a stahut display which piesents statistics

describing the current state of the execution.

The neural network simulation should be very flexible for the user to save and

restore a particular environment, where the environment includes all uer-selectable

options available at a, particular time, such as position and size of windows, views,

neural network algorithms, and input parameters.

To help users understand all the options available, on-line help should be avail-

able for every interactive function.

3.3.2 Clieul-Programmer RequiremmenIs A nalysis. A well-defined, con-

sistent programmer interface is essential to the effectiveness of a neural network

simulator. If new neural network algorithms or paradigms, views, and input param-

eters cannot easily be added to the system, the system is not an integrated simulator

system and cannot fulfill its purpose. The client-programmer should be able to cre-

ate. modify. and delete paradigms or algorithms within the neural network simulator

system.

The system should provide a library of all neural network algorithm simulations

as well as a library of primitives to support color" visualization. The system should be

structured such that the neural network algorithin simulations are independent and

separate from the main simulation contioller. Individual neural network algorithm

51

simulations can be added. deleted, and modified from ANNS with no effect on ot her

neural network algorithm simulations or the system as whole.

Client-Programmer Inputs

0.1 Neural Network
Ma taleAlgorithmn

Simulations

SiWorkstation

End-User Inputs Outpatts
- Simiulation Outputs

Functional Model Level I TITLE: Manage ANNS System

Figure 10. The Functional Decomposition Diagram Level 1: Manage ANNS System

3.3.3 Enumerated Requireencits for ANNAS System. (see Figure 9, 10,

11, 12. 13. 14)

1. Establish a user interface to ANNS environment manager

(a.) Allow user to customize the ANNS environment

i. Provide multiple neural network algorithm windows

ii. Provide multiple graphical view windows within each neural network

algorithm window

52

Client- rogranmner Inputs

0.1.1
Get System Maintenance Commands

M nMaintenace
Commands

0.1.2

Add Neural qetwork Algorithm Simulations

Paradigm4

0.1.3

Modify
Paradigm

0.1.4

Delete
Paadigm

Functional Model Level 2 TITLE: Manage Neural Network Algorithm Simulations

Figure 11. The Fuinctional Decomnposition Diagr'am Level 2: Manage NN Algorithm
Simulation

System Maintenance Commands

Get Component Maintenance Commands
Comiponent
Commnands

0.1.3.2

Add Neural qetwork Algoritlhi Sinunlations
AAlgoritlum
Comdponent

0.1.3.3

Modify NN
Algorlithin

Comnponent

0.1. 3.ý4

CDelete NN
Comiponent

Functional Model Level 3 1TITLE: Modify Paraidgm

Figure 12. The Functional Decomposition Diagram Level 3: Modify Paradigm

54

Neural Network
Algorithm Simulations

Process Environment Commands
End-User Wd

EnionetOutputs

Functional Model Level 2 [TITLE: Manage Simulation Environment

Figure 13. The Functional Decomposition Diagram Level 2: Manage Simulation

Environment

0..

Environment Neural Network
Co'i nands Algorithm Simulations

Process Environment Commands
Eunvronnment

0.2.2.2I
Get

Input

End-Ue Parameter
Files

In1pt 0.2.2.3 Workstation

Manage Outputs __

Status
Display

0.2.2.4

___ Manage
Master
Control

Functional Model Level 3 1 TITLE: Manage NN Algorithm Window

F-Igure 1!. The lFunctional Decomposition Diagram Level 3: \Manage NN Algorithm

Window

56

iii. Allow user to p)osition and size neural network algoritlhn and graph-

ical view windows as desired

iv;. Allow user to zoom and pan display in view windows at any time

v, Allow user to terminate simulation session at any time

(b) Allow user to select paradigms. neural network algorithms, and input

parameters for each neural network algorithm window

i. Select paradigm class from a list of available classes stored in the

paradigm library directory, such as back-propagalion, hybrid training.

radial basis function, hop/jield associative memory, etc..

ii. Select neural network algorithms for simulation from a list of available

neural network algorithms within a selected paradigm class.

iii. Specify input parameters for a neural network algorithm friom a list

of input parameters associated with a selected NN paradigm

iv. ('lose simulation window at any time

(c) Allow user to control execution of neural network algorithm simulations

i. Select control mode: individual or simultaneous

ii. Start or reset a simulation

iii. Control speed of sinulation

iv,. Terminate or pause simulation at any time

v. Restart a paused or terminated simulation

vi. Run simulation in a single~step mode

(d) Provide a simulation control mode to allow user to control ,ill the simu-

lations appearing at the same time

(e) Provide environment sa\ve- and restore function

i. Save all user selections currently in effect

ii. Restore previously saved environiyient

57

(f) Prvd On-line help for. every intcrac.Iive function

2.Establish a neural network p)roograminier interface to nieural network paradig"Ii

simulation library

(a) Allow neuiaI network programmer to create, mnodify, and delete neural

network algorithm simulation within A NNS syst em

i. Aidd, modify, and (delete neural network algorithmns fromt neural net-

work p)aral-igm class.

ii1 Add. modif. and delete neural network aloih grpia vi1ews

iii. Add, modify. and delete neural network algorithm input p~aramieter's

(b) Provide automatic validation of changes to A-NNS system

i. Interface errors are reported immediately

ii. Protect ANNS system from accidental corruption during development

of new neural network simulations

(c) Provide library of primitive functions to supp)Iort coloring simulation

-3.4 Preliminary De-sign

After the requirem-ents were determined. paper designs of the screen layouts

were drawn and evaluated. These served as the start ing points for thie p~rototyp~es.

Even though the prototypes did not. have the full processing capabilities. they were

usefuil in evaluating important asp~ecr-s of ANNS system. This section ideiitifie."

several design issues in developing these prototypes and the decisions roiade.

An objcci-oricnltcd design methodology was used to I rtiislate the reqliirenlents

into highl-level Obj~ccs arid Operaion01s. Thl-e First steJ) In prodliicilug thle 01) ut -orielit ed

design was to iden'tify the major objects andl object classes. Booch defines at class as a

set of objects that share at Common st-riuctui' and common behavior [5:93'. Foir A N N

svstiii desirnm two high -level graphlical object claSses anld a nleural nldwork algol it hun

component object class were defined. -igure 15 shows the high-level object classes

and their subclasses. In this section, the high-level classes and thein interfaces are

defined. Specific object instances and their relationships are also described.

ANNS

paradigm

compontent menu window

NN NN main NN graphical mainagrtmagrtmalgorithm grpicalido
agrtmagrtmmenu windowviwino

component menui window

Figure 15. I ligh-Leve' Objecl Class Struct ure

-. {.. I Thc Window Object Class. A window is aii an stra(tion

hlta! represents a redcalgular region of the woikstatioi• display. \indow.,s ca:; be

moved and resized. Text oi graphics can be displayed in a window. \Vindow-, can be

dispiayed within other windows . Figure 16 shows the absstraci data type (A I°I,

specification for the window object class.

59

window

Position(x,y)

Site
Text
GraDIdcs
create()
sh0owO
destoryO
setPositionO
getPositionO
setSizeO
getSizeO
hideO
putTextO
putGraphicsO

Figure 16. ADT Specification for ANNS window Object

The ANNS design incorporates three levels of windows to provide the user with

multiple simultaneous neural network algorithm simulation and multiple graphical

views of each simulation. Figure 17 shows the instances of window used by ANNS

and their relationship to one another.

" Main Window.

This is the highest-level manager window of the ANNS environment: all in-

teraction with ANNS is contained. No simulation actually Lakes place in this

window. The main window supports multiple instances of the NV algorithm

win do it-s.

"* NN Algorithm Window.

Like the main window. NN algorithm windows exist. mainly to contain other

windows. Every NN algorithm window is associated with a particular NN

paradigm class. NN algorithm window may be created and destroyed at any

-ine, but there is a limit to the number that can exist at any given time. Each

NN algorithm window supports multiple instances of graphical w, winl(o1s.

NN algorithmn windows can be resized and moved anywhere on the' screen of

the Sun Sparc2 workstations and they may overlap one anol her.

60

Figurw Windowneso wndw

(i n

o Graphical View W~indow.

Neuiral nietwork siimniat ýiis1 are graphically displayed ini (ralphical view winl-

dows. Every grajI)hiC(d View window is associated with a Ipartictilar gtaphical

vicwv of a nieural nietwork algorithii. Graphicai view winidows caii be rebizCel

anid tiioved.

3,j .0. 2 'I'l menu Object Class. Thle menu p~rovidles a met-hod for

uisers to mnakc a selcctioim from11 several opt~ionis. hin XViewv protocols, menu conisist of

low-level objects called ni niih alins. tinciulfti can bie associated with a lparticiilar

operatioii wbich inxoked wheni the icnidnulit? is selectedl. Figuire IS describes the

menu oibject class with its instanices an-d operationls.

Position(x,Y) Selection
noltems itemNo
nienulIeni

create()
Show()
destory()

hideo
gptSelectionO
setmenultemn(
"etmentiltem()

&lIetemenultem()
S getNoltemiso

Filgtireo !S AI)T Specificationi for- AN-N*S mrenu Object,

Th NNS prio\-ides two inst~ances, of menu for uiser with high-level (lecisiolis

on, two leveis.

o Main MVenu. This menuit is, used to select. a niew NN algorithmi simuitlation1

anid to aciepaniels foi simutltaneouis control of shimulationis and~ for savini- anid

restoring, simnufatio n eivi roinments.

o NN Algorithmi Window Menu. An) NN algorithmi winidow mnenul is associ-

at-d with eve-ry N N il-ordiihii whidow. T'his mienui is uised to activate variiis

62

Ipaiels wvhich control the siniulation, retrieve or save Mini~t. data (weights) file

anl, 1)resent a status (lisp~lay for the slimulationl.

.3-1.0.3 Thc component Object, Class. The component object

j)rovidles mieanis to select anid conitrol the NN, paradigm wndoinpoetts dep~icted ini Figure

S. The componenit objects are associatedl with N.N algorithin windows anid grap~iidal

view windlows, but niot with thme miaini wiidlow. Figure 19 shows the component

object class wvith its inistances anid op~era~tions.

com oet
componentNameParameter

Value

setComponent()
getComponentO

setParamneter()
set Valueo
getParametero

getValue()

Figure 19. ADT Specificat ,ioni for ANNS component Object

The ANN'S designi uses three typ~es of complonients: inpul, AN paradigml. anld

graphical v'ita%: Each typec supplenmets the b~asic operations suj)J)lied by the class with

a set. of comp~onent-specific op~erationis. Figure 20 ilhmmstmates how the components

fit inito the INN, algorithmi window structure.

.3.5 Summirary

This chap~ter lpresentecl a summiiary of designi miethodooogies uritybi-

used for softwvare developmient . Tihis was followed by a (lesCriljtion of the hmybrid

miet hodology usedI for ANNS systemn. To start the fiirst step) of this hybrid software

designi model. t hie systemim requiremnent anialysis was decscribed inj time- forii of funictionial

63

'' [NN

NN Algorithm
Algorithm

Input ! NN Graphical

Graphical Paradigim ViewView Component Component Component

Windows getlnput0 getIEO ProcessIE0
simulate updateViewo

Algorithm0 paintViewo

"Figure 20. Structure of NN Algorithm V Windows

6-1

decomposition and enumerated requirements. The object-oriented design technique

and the design objects with operations were also described. In the next chapter.

the preliiinarn design is translated into the detailed design and ilnplenieidation of

ANNS.

65

IV. Detailed Object- Oriented Design and Irflierrientation

4.1 Introdaclion

t[his Chapter de~scrib~es the dlet ailed ob)ject 01 iente(I design an(I in plemeiitat ion

of AINNS on Sun SPARCstations using the XView wvindow-based GUI (Graphical

User Interface) environment,. [he p~urpose of the XN'icw GUI is to binid all the othern

neural network .,ubsvstenis into oneC homo1geneCous. User friendly environment. Thlis

implIementation is based on the jpreliniinary design dlevelopedl in chapter III.

The topics discussed in this chapter include: the motivations for selecting

XView as GUI. the detailed 001D design, the graphical representations of depen-

(lenc\ modules. the impl)ementation approach., the results of the implementation.

and the testing mnethiodology.

4.2 11otivationis for Selecling XView as GUi

4.2.1 P)rom Users Pcrspective. WVith the large influx of Sun SPAIRCsta-

tions. miost contemporary users at AFIT are usinig Openk~indows simplyl becauise

all of the Sun workstations currently in use at AFIT default to Openk~indows. The

Open Windows environment is largely implemented with the OP3EN LOOK toolkit

(parts of it are still in XN'kw~). OpenýVindowg is th',- default user interface environ-

ment for the SPARCstation2.' It. is running on all SPARCstation2s at AFIT. The

XView interface has much the sam-e look and feel as the Open\Vindows applications

sup~plied by Sun. So., the goal, from a users perspective, is to make ANNS indis-

tiriguishable from other OpenWindows applications, which means end users (10 not

have to learn another interface.

"1 Ths Is an installation configuration decision. Sun bundles OpenWindows with the opevating

system.ý Of course, system adlministrators have the op~tioli of Inst alling other eww ionmients

66

4.2.2 From Progran mers Pc;uspcclimc. XView provides the programimier

with a predefined set of interface components which are intended to simplify appli-

cations development. Manv of the ANNS objects map directly to XView objects,

sigm. antlY simplifying the implementation. XView is also an object-oriented and

OPENIOOK coml)liant widget set from Sun ilMicrosystems. The XView program-

meer's model was complied with the OPENLOOIK standard. The XView widget set

is not as sophisticated as that of other widget sets, like Motif and Athena which

are also very popular in the X windows world. Of all these toolkits. XView has tihe

easiest programmer model to understand and iniplmenit . A nunmber of simiple, but

effective examples are provided with thle Open\\I'doýs development software and

are the same examples used in [9].

11.3 Detadled Objccl-Oricnted Design

fn this section. the detailed design for each object that is part of ANNS is

discussed. The physical design and object dependencies of ANNS is graphically

depicted using module diagrains.

A module diagram is used to show the allocation of classes and objects
to modules in the physical design of a system: a single module diagram

represents all or part of the module architecture of a system. [5:17,5]

The object dependencies for each detailed design module in ANNS was shown

via diagrams composed of a modified version of module symbols presented in [1:55-

59] and [5:175]. ,lodule diagrams are used to represent the (hierarchical) procedural

structure of the ANNS program modules. Module diagrams are an effective program

structure notation, yet simple enough that practically anyone can understand them

with little or no explanation. Figure 21 shows the three types of modules used in

this chapter to describe the ANNS system packages. The first is used to represent

the main ANNS subprograms. The second module represents t.he packages that

encapsulate the object operations in the system. The third symbol is used as a space

67

saver to rep~resent that there arc several neural network subsystem which hicludes

p)ara(Iigni packages. ilie dIirected arrows b~etween modIules indicates coinplI 101 io

(lepeu(1enc% where the module at, thle source of the ariow dlepends Oil thle lflodlll at

thle destination of the arrow.

All Packages
Subprogram Data Package in Subsystem

jObjeets

Operations

depends
AB

Figure 21. Booch Module Symbols

The module (liagrami of Figure 22 rep~resenlts the architecture of the ANNS

system. T he dlesign of the ANNS systenm consists of three levels of execution linked

via UNIX sockets. Each class system is a self-contained, executable system. Wit hout

the sockets, each individual class system in the ANNS system could be run s'tand~-

alone. Th'le three levels of execution are:

* The AASmalln proceSS.

The ANNS main process is the highest level interface to ANNS. It acts as the

environment manager and creates the main prcs windlow, the main menu

window, the central control window, the environment control window, the exit

window, the hielp window and a means fo. starting NN paradligmi simulations.

* The AAiVA5' coniton library.

The m-iddle level of execution is the NN paradigm--specific window-based prio-

cess called ANN S common library. Each NN paradigm comp~onent. interfaces

68

wvith the C01111nof0l lilbrarv for simulation cont rol. The commion lib~rary provides:

thle giap)Iical view WVindo1ws for viewing tHie dlynamically grap-hical display, t he

lmaster control Window for mniotorinig and modifying the parameters that af-

fect the simulation, and the online help windIow for understanding the(use of

all the paramieters in the master control xvindlow.

The AN A ANS paradigms11.

This is the lowest level of execution which is transparent to the users. Elach NN

paradigm hias three wvindows associated with the ANNS common library. The

graphical view window is directly under the paradigni's control. Thiere it, only

one N N paradigm (mutl tilayer feedforward networks using backpropaga tion)

imp~lementedl so far. md Cudim ricleven algorithmns: B~ack P~ropagat ion. Back Prlop

W/Momentumn, Second Order Learning, Cottrell Identity 'Net , Tarr/Cottrell

Identity, Auto-Add a LaYer, GrarnSchimidt Network, Gram-Schmidt 11) Net.,

Brain.Makem . Radial lBasis, and~ Conic B~asis. If there are time constraints for

this thesis cycle efforts, the irest of the paradigmis shown in the figulre 22 Could

be implemented by chient-programnniers or by flie next thesis, Cycles.

j1.3. I -Vain Procrss lWindow Mlodule. The ANNS main process window

is not associated with any pai ticular NN algorithmi sim-rulation. but provides anl

environment in which any N N algorithmi simulation can be controlled. Fýiguire 2:3

shows the (letailedl designl of main process wvindow module,

J1.3.2 Main Menu M1od uh. The main menu module is for options to create

NN paradigm menu window. cenitial control window, envim oninent. control window.

help windlow, and exit wjindow. Figure 2-1 shows, the detailed design nmodlule of' maiii

menu module.

,1.3.3 Genii-al Control H'indow, Module. This modlule provides a meanis for

siniiultan.ýously controlling muIl1tiple simulations. It creates I-1 EL1P lanel modlule, GO

69

ANNS
Main(Inallo)Help
WindowWindow

Cetrl:ovrome

Central Environnien.Control Control
Menu Window Window Wno

UNIX
Socket

Common

Librar (mainff)

Graphical View Help
Window M aster Control Window

UNIX UNIX UNIXUI
Socket Socket UTNIX Socket SoktSocket

Hopfiteld obonen pr.~m

PPropagatio
ni

Maps

L-Mttlae Pecptron Hybrid Propagation Sales TravelingL Problem

Fi~gure 22. 1The Architecture of ANNS at thle 'Top Level

70

Main
Window

Create Mai n Process AcNNSy
Menu Events

Figure 2:3. Module Diagiam forI' lain Process Window

NN Paradigms
Menu Window Main Menu Exit Window

Central Environment
Control Control Hl
WindowX Window Window

F-igur,"e 24. Module Diagram for" Main Menu Module

71

panel module. STOP panel module, RESETU panel module, and QIAT panel module.

figure 25 shows the detailed design of the central conitol window module.

Central
HELP Control QUIT
Panel Window Panel

GO STOP RESET
Panel Panel Panel

Fignue 25. .Module l)iagram for Central Control \W\indow Module

4.3.4 EnIcironrnn! Control llindow Aodul(. This module provides a

means for .-aving the current simulation envmironimeit, estloring a saved environ-

ment. or killing a saved environment. The environ nint includes, all usise options

currentlv seiected: window size. window plitcenill. a•d NN Agorilhim n anmeters.

"lThe environment control window module is shown in figure 26.

14.3.3 5 I'i• Window .llodul(. This module warns users that the, executive

status of ANNS would be killed and the execution would exit by providing two

options to confirm exitirg or cancelling. The Exit Window module is shown in

figure 27.

72

Environment
Path & Directory Control - UITCreator Window 3 anel

_p Li-

I KILL
File Panel Panel

SAVE
HELP Panel R ESTOlE
Panelee<h Panel

Figure 26. Module Diagram for Envirojnlenl Control Window Module

73

Exit
Window

EXIT Cancel
Panel./ Panel

Figure 27. Module Diagram for Exit Window Module

4.3.6 Graphical Vi iw Window .1lodulc. This Module is the place NN

simulations take place. It handles tihe NN simulation events ,nd display the updated

graphical view of NN algorithm simulation. The Graphical View \Vindow Modulc' i

shown in figure 28.

J4.3.7 Mastcr Control lWindow .lod uk This module provides all options for

users to control the NN algorithm simulation, such as the simulation speed conII Iol-

Ring. "Go" simulalion, "Stop" simulation. "'Reset" all the parameters. and "Quit" the

simulation. The Window is divided into several sections: Control Section, Algorithm

Options, Simulation Status Display options, and Configuration options depending

on the type of NN paradigms. Figure 29 shows the detailed design of Master Contiol

Module.

74

Graphical View
Window

Process
Simulation Display a
Events Graphical Iconit~v

EventsView

Figure 28. Module D)iagram for Graphical View Window Module

J1.3.8 aIuldilay•r Pcrccphron Paradigm. This is one of independent NN

subsysteems in the third level of A:NNS as in figure 22. It should provide the window-

based level with the Interesting Events (IlEs) that drive the simulation and update

the graphical display on the graphical view window. "'he detailed design modules of

this system is shown in figure 30.

Each subsystem or NN paradigm has one' graphical view window and one mas-

ter control window associated with it.

In the implementation stage, C was selected as the programming language,

since C provides the speed required for computer graphics intensive applications.

and supports modern software engineering concepts. The XView and SunOS, Sun

75

Master
Control Section Control Simulation Speed

Window Controler

Simulation
Status Error History
Window Window

Configuration ~ j
Algorith~, ControlNoeVlu
OptionsSection

Figure 29. Module Diagram to- Master Contrrol Window Module

76

Multilayer InitializeNetInteresting Perceptron

Events Neural Network
Handler (BG _mainO)

Meake_Input

UNIX
Socket

connector

Display Train Propagation

Algorithm Net View Net PL
Select orj

Figure 30. Module Diagram for MNiltilayer Perceptrot- NN subsystcen

77

workstation operation system. provide an excellent interface to C proglanning lai-

guage.

It. 1 Creating and Mapping Objccts from Dc-laded Design Modules. XView

providcs a very clean interface to it's object set. There is a common set of functions

that allows usiers to manipulate any objects by referencing the object handle. The

functions are:

* xv-init(:

Establishes the connection tot lie ser\ el. init ializes t lie Notifier and the l)efailts's/RcsouI ce-

Manager database, loads the Server Resource Manager database, and palses

anx genelic toolkit command line options. Called once at the beginning of the

p~rograin.

o xv-create(:

Creates an objecl . Every XWiew object is created with this function.

* xv-destroy(:

Destroys an object.

* xv-findo:

Searches for and returns an object with the specified parameters. If none is

found, the object is created.

o xv-get):

Get the value of the specified attribute for the specified object.

0 xv-set(:

Set the value of the specified attribulte for the specified object.

Usin•g these six routines., programmers can create and manipulate the entire XView

object set for ANNS.

J/,..2 'I)-pes of Objecis In N ViCUe. There are eight basic object types in

XView. TFhreev of these. ericjcr~c Objeels, lltindoc.,,. and Opcniwims are core classes

78

ani(1 are riot dlirectly iristanitiable by the niscr. The remainling five are (lisclissedi belm\w.

T'he basic wiindow entity is the fraitnL. All other wiin(lows arc classifiedI as subtrwinoa.,S

an-d must be attachied to frames.

"* Fi-raes

A frame is the basic wind~ow ob~ject to which the programmer has$ access. Thet e

are two flavors. a base frame. ani(l a 1)01-tipl frame. .A base frame is a falame

with nio parenit. All other firamnes are sui~fraines, so a 1)01-tip is aniy f'rame

which is not the base frame. Each applicationi has oiie b~asc framie. [h'lere are

nio (preset) limits on- the inumber of' stibfr-ames. A frame is characterizedI by a

bordler, which is manlaged by the wini(low maniager, and(ani interior which is

conifiguredI ail(l maniagedl by the p~rograinmer. The whindow maniager cotitrols

resizing., iconificationi, dle-icon-ifficatmio. refreshinig, quittling, etc. .All View

wind~ows are framedl.

"* Canvases

A can cas suýbiwindowr is the X\`iexv graphics wind(ow. It's size is ind~ep)nei)mclt of

the owningi framne. The enitire drawing surface is calledI the pain! wmndow: andr

the' visible Iportioni is the vi(i wM winow Mtultiple. scrollable, views of a canivas

are allowedI withini a framne.

"* Text Windows

A ldx! sabawimdoi providles b~asic, text editinig cap~abilities us11ing the OPEN-

LOOK text edliting modlel. T'his window is a specializat ioni of the canivas suib-

wind~ow with text e(lit ing cap~abilities addled.

"* Menus

Mlenus are niot actuially XView whindows, but, they are- hound to windows at

dlispl)ay time. XView suipports a full ranige of menu typ~es and(ojptioiis Suich as

p~ull-dlowi., lpop-iil) anid ptill-right. Mlenuis cani be piniicd to allow them to stay

on- the screeni after the selectioni is niade.

79

s Scrolibars

Scrol bars aie interesting Oljcc ts. They call exist Iindependently,. or lbe attached

to subwiiidows. Scrolibars are windows (because they are visiblIe) but they are

usually thought of as p~roperties of subwIndows. Scrollbai's do not, manlage the

objects to whinch they are attached, it is the piograinmer' s responsibility to

make the screen Updates associatedl with scroilbar actions.

An important feature of XViewv that is not a wvindow is the Pancl. Panels implement

the OPENLOOIK control arma Panels manage pan ci itcins. e.g. buttons, sliders, text

fieldIs, andi other forumi of inp)utting dlata. The motivation for panels is to providle a

mechanism for propagating events, especially for ob';Cct s which do0 not have a, window

associated them. Panels are very imiportau(in XWiew. For example, an appllicatioin

frame with no0 sLIbWindows attached cannot catch iinterioi niouse evecnts. Attaching

a panel to the frame allows these Li.terior events to be propagated.

Obviously, there is much more to XView t han what hias beeii presented here,

but this is sufficient to give the readei the necessary background for jinplenientatiloll.

4.41.3 Imlnpcnintation Dccision~s. This major iniplementat ion decision en-

counteredl was to dletei mine how, to nmak(a wvay that thc- clieni-progranine 1.5 can

dectclop and add their ncw, NN paradligms or algorithmns to thc ANNS systcm.

./.4i. 3.1 A faking a managcable devccoiomnti cn'ironmncnt1.

*UNIX Socket:

UNý,.I X sockets [.13] provides the InterProcess Communication (IIPC) facilities for

indlependlent execultab~le programs. This idea wvas used to control NN paradigmn

processes for the ANINS system. The UTNIX IPC interface makes IPC simlillar

to file 1/O. Each NNparadigm process has a set. of I/O descriptors for reading

and writing. The descriptor m-ay refer to riles, dlevices. or conmnunications

channels. So. this. solution creates channels between the ANNAS main processing

so

l)r'OCe(li-e and every \,N paradligmi compjonent (subsystem). It provides for

p~arallel dlevelolpment Of shImllation subsystem and is simp~le to implemenit. lIn

this case. the NNparadligm subsystems are essentially stand-alone except fbr

the If'(hooks to the AN\NS miain process.

e The Interesting Events (JEs):

Oiven that, -NN paradignis are implemented as sep~arate processes wvith I PC

hooks to the A.NNS main process. herecomies uip w,,ith at quest ion: I Iha! does

aNN paradtInm JprOC(:s. Comanincah wi/h th(A .-1VNSV main procrs V' To ge(t.

a solution, the N.,N paradhig cmpCflIonent needs5 some mechanism for report -

ing the Interestinog Events for each piocess. In each NN\ paradligm subsysteim,

the lBackGround mnain (lG-main(. see figure :30) procedure identifies and

crecates the lEs to commutnicate the AN.N main Process and update tile silmu-

lation status to display graphical view on the grap~hical view wvinioow for every

process step. I-sing mull ulayer perceptron paradigm as at examplhe. the l1's

would be INITIALIZES Li' for the first process step. The following processes

would be MALKE- IN1IUt-'l to the neural net, PROP~AGATE" the input, vector.

TRllA IN, -N EIT, and then D IS PLAYS ENT,] IE\,W. Thle IEL corn innicat ion model

that the A.NNS main process communicate with each N.N paradigmi comp~onent

is shown in fuigre :31.

*UNIX Makefile and Archive Utilities:

After the client -programimer inuteiface was created. another quest ion is: how to

make a library manager and cnvironifinci moiiaqur a-s in fiqarc 8 of chaph r HII

?F~igure 8 shows an idealistic absti act model Of the ANNS system in which a

library man aget provides an inter-face thi ough which cletpogamrnall-

ap~e N.N paradigm) components. andh an ennrironment manayc r pm ovides an in-

terface through which end-users select paradigmn comp~onent~s t o create inter-

esting N p haradigm simulat ion. In soft ware, thle concept of a component

lilbrary is ext1 re iCIlV complicated and difficult to Iimplemenmtbcas thlene

81

NN Paradigm Componen ANNS Main Process
- -. . . . - -. .

IE Sinulationi
Generator GO

[IE i> I =E D ,- ISinmulation

tNeural Net • - •i[IE

S , i Update

Generator

i Statuscno

--------------- - - --- - --------------------------------

i i, Graphical View Window '

tFigure :31. The IEs Communication Model

82

NN p)araldgipi comiponients would (lytinaically be added to thle ANNS svsteni

by clinet-programmners. The solutioii for this case is to sitriply use thle UNIX

Alakcjilc utility and ar (archive) utility. To do this., the ANN'S ianin process.

the coifllflof files lib~rary, ajid every N N paradigmn comlponien axe orgaiiized(

as separate comipilatiou units. This structure miakes the ANNS systeml 11ore

miodular. suppor01tsl informnationt luiding, mnakes files smialler and tlierefoi e easer

to edit. an-il makes it p~ossible to recominile only those conlpile lflodules that

have lbeeni changed rather than t he entiie systemi .A portion of the 101) level

Iaik•Jike for A'NNS Is:

BASE = $(PWD)
LIBS = ANNSmain ANNScommon
PARADS = BackProp Hopfield Hybrid Kohonen STP

all:
for d in $(LIBS) $(APPS);\

do (cd $$d;\

echo; echo '****' compiling the $$d directory '**;

$ (MAKE) BASE=$ (BASE)) \
echo;

done

The ANNSniain and ANNScomiinoii are library (directories. The lPAlhDS ini-

cludles all jaradigni ('omjponenits iM the ANýNS systemn. Each of these pai adigin

com1ponenits is a (lir-cetorv wNith it's own Alaokcfilc. Another (TNIX facility is ar

ultility..It an iportdntI tool foi p)roniotiing functioni level reushe for thle C langruage.

ar was used to bundle the ANNS mnain p~rocess object files into a library file

with a single namie called libANNS~a.

4 .- 1 GUI IWplaciicidn Slrualcgyyfrom1 Siliconi Graphic~sfor Alulidayni Ih're(p-

hoiio Pairadigin. Withiout a doubt. thle ow rriding dilfficulty in this invest igat ion xwds

in undlerstail(liiig the ~ource codes of Xtuira/Gi-aphic~s ndil graphiics routities of thle

Siliconi CrapiK s S\.steni [.39] [10]. T[here Is p~reciouis lilttle det~kiled enid-users, 11,1l

for XLurai~ra ph ic, . but, thiere is niot u~iv (locuuilenltationl forclet-igrlii r.

Is:

Weeks were sp)ent pouring over code and doing execution traces uising diagnostic

print statemenits. If there wete anl anotated,, graphical rep~resentation of the major

dlata structure and control structure of the XVuiralGraphics . the programmers could

seriously benefit from uii(erstailding, the flow chart of the system structure. B~ecause

the goal of the rep~lacement process is to inaiiitain N'uira1Graphic~s in a orginially

functional state. no changes to the N-N algorithmn structures of' XcuralGraphics

wvere, at tempted. InI this- ca~se. thle algorithmii source codles iemain coinplcteky funic-

tional. In addlitioni to the GUI replacement. Parts of the effoirts were in) makinl",

connection to the AN-NS interface for Interesting Eveiits (L)of the Net-Loop in the

IBackpropgation sub)system.

45 7*h-sling Appraoches

This section presents the testing p~rocedures. "Software tesing is defined as the

execution of a program to finid its- fatilts** [12:1911. There are seven types of tests

that can lbe p~erform~edl on a software system [12:192-20-11. The following discuss thle

tests p~erformed on thle ANNS system based onl these seven types of tests.

4.5. 1 U 01 Tc-sls. Also knowvn as white box testing because the test is

based on knowledge of the internal dlesign of the module-. Accordinig to thle ANNS

design m-ethodology as in figure 7 of chapter 111, unit test ingi was p~erformed onl the

inidividual modiule to ensure the proper functionality was, achieved. This included all

the operations p~erfornmed by the niain iaenu buttomsý (and thle olci at iow, performed

by master control buttoris.

4..5.2 Extcrizal Flimcloio Trsls. Validate thle er-ternal sy-steml functions.

This Is also knowiu a-, black box tv.5tijig~ because the test pei formed has no kiioxx lcd-v

of the Internal deinof thle modules being tested, This type of test was used InI

con jection willh t he integ-ration test dlescribedi below.

&i

4.5.3 Integration Tests. Validate the interfaces between system parts

(modules, components, subsystems). It can be performed in one of three ways:

"* Bottom-Up

Each module is tested separately using special development drivers that provide

the needed system functions. As more modules are added to the system, the

driver is replaced by the modules that perform the simulated functions.

"* Top-Down

tUses a prototyping approach. A basic system skeleton is constructed and new

modules are added and tested as the\, are devcloped. The function of lower

level modules are simulated by program stubs.

"* Big-Bang

Each module is developed first. Then, they are all assembled and run together.

This is the least effective of the three methods. The need for special drivers or

modules stuba is eliminated: but. each module is only given a, cursory test with

this method and the likelihood of a totl system integration failure is great.

Integration testing for ANNS was perforlned using the top-down appraoch.

The main subprogram was developed and implemnented with stubs for each major

fluictiom]. As each module was developed, it was attached to the main system and

tested to ensure proper integration.

4.5.4 Syslcm TRsts. Validate the system to its initial objectives. The

robust ness of the system as a whole is considemed durimng these tests. They take into

consideration factors like peak loads and volume the .5ystem can accept. security,

performace undem peak and normal conditions. svsCrem reliability. error handling,

and recovery mechanisms. Tlihe ANNS code was design to be internally robust. It

tries to take into consideration all posible input events to the systeM. \kihen a

failure is detected a-mywax. a secondamy mechanis•in takes control where the program

85

terminates as gracefully as possible. So, the system testing for ANNS was actually

embedded into the unit and integration testing cases.

4.5.5 Acceptance Tests. Validate the system or program to the user's

requirements. This test was done in conjunction with the installation test described

below.

4.5.6 Installation Tests., Validate the instability and operability of the

user's system. In other words, test the sytem in a real user's environment. This test

was performed by getting several volunteers to use the system and fill out question-

naires pertaining their evaluation of the system based on a set of criteria. Appendix

C contains a sample of the standard form used by the Department of Electrical and

Computer Engineering at AFIT to evaluate software systems.

4.5.7 Regression Tests. Run a subset of previously executed integration

and function tests to ensure that program changed have not degraded the system.

Any time a major change or modification is made to a piece of module, there is the

possibility of introducing errors into previously correct code. Thus, regression testing

was made at each iteration of changes during the implementation stage. After the

last iteration was completed, the ANNS system and the multilayer perceptron neural

network subsystem were intergrated, and then the intergrated ANNS system testing

was performed.

4.6 Results of Implementaion

This section presents the visible results of implementations based on the de-

tailed desgins. All figures are directly derived from the actual screen images layout

except the size of the images. See firgure 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, and 42.

86

Figure 32. Main Window Model

Figure 33. The ANNS Central Control Panel Model

87

A *d � �

Figure 34. The ANNS Environment Control Panel Model

�* * __

* *.:.4t ____
ii � _____

rt9 � -�

'' .*.. �c-
.. -�/,

�k�3 _ _

_ �.

�

� �w '.' ./.

____________ �. . -. �

_ .o� _

/ '-.�- _

� .'-.�" . __

__ I�Ah�-4
_ ___ �\. .�

�C.> W..4� V +5,/A\.'�'c� .' . 4' . //4'4.44 (cc.... .4' xc.. ccc -Xcc..--..'.c&cc4'wc.

Figure 35. The ANNS Master Control P�'ic1 Mocki

88

Figure 36. The ANNS Configuration Options Panel Model

89

Figure 37. The ANNS Icon

Exemrplars 4/4 At

/1k

)FE

Test:Right 000.00 TRAIN:Right 000.00

Good 050.00 Good 050.00

Figure 38. Algorithm Window Model

90

MultiayerNeuralNtDsrdO pu eyrg "i nfYe~f..Re"uP2 et DsrdOt yrg
C Cass 1 Sarnple 3 * DereOuut Arae1class I Samnple 3 eie Ot vrg
File; xor.dat Actual Output Count 20 File: xor~dat Actual outpu Counst 14

ExpFrnplars 4/q Exer.plars 11/4

- Yii
Figure 39. ~~~~~twoAgrtmWnosCmaio oe

T.1

Figure 10. Simulation Status Window Model

4j.7 Summary

This chapter p~resentedl the ANYS dletailed object-orletned design. the motiva-

tions for selecting XN'iew as CIA. and impliementationi. ImlemIeentation essentiall5

consisted of thc top-down mapping of ANNS design ob)jects to their corresponding

XView objects. The dependencies of the design modules wcre also rep~resentedl by

11ralphical figures.

The results of the impl)ementation presented the actual screen images layout

for miapping the de~tailedl object-orientel (lesigns. The Implementation decisions Ind

the test procedures were also (discussed. In the next chapter tim research summary

of the ANNTS sXystemT is presented, andi recommendationi fo: the further research are

offered.

92

Figure 41. On-line Iielp Window Model

93

Figure 42. Exit Notification Window Model

94

V. Conclusions and Recommendations

5.1 Introduction

This chapter summarizes the work performed for this thesis. It then presents

some recommendations for further research.

5;2 Research Summary

This thesis effort resulted in the development of an animated graphical user in-

terface for the neural network simulator. It provides engineers to the neural network

field of graphical demonstration to illustrate some of the concepts in neural network

problem solving; The results of the ANNS implementation have met or exceeded

the requirements established in Chapter III. The work to generate this project was

accomplished using an iterative approach. The major actions performed were:

* Analysis of the problem domain.

Before doing any design or implementation, an intensive study was accom-

plished to gain an understanding of the terms, concepts, and philosophies

needed to design a user interface for ANNS. This involved research in the areas

of neural networks, graphical user interface design, object-oriented design, X

Window System, the NeuralGraphics package.

* Determination of system requirements.

The system requirements were gathered through the series of literature reviews

of simulator systems, and based on the idea to create an integrated and unified

neural network simulator for both end-users and clientwprogrammers.

* Development of the high-level design.

Having laid the foundation through the accomplishment for the previous two

steps, the next task was the high-level, object~oriented design of the ANNS

system. This involved the identification of the objects, their attributes, and

95

the communication needed between them. At this point, several alternatives

of how to incorporate the X Window System into the design were considered

and the overview of the ANNS system was determined.

* Detailed object-oriented design.

Before the detailed design, the motivations for selecting XView as graphical

user interface was discussed. This discussion based on the users perspective and

programmers perspective. For the detailed design stage, the module diagram

was used to illustrate the allocation and dependency of the classes and objects.

* Imnplcmenlation and testing.

The implementation stage was to create and map objects from the detailed

object-oriented design, and then generate the moftware source codes. At this

stage, the types of objects of XView associated with this detailed design were

discussed, some of the technical implementation decisions were made and the

GUI replacement strategy was depicted. This overall system was generated

through a repetitive process of evaluation and planning, detailed design, code

generation. and unit. regression and integration testing. This method ensured

that a working p)roduct was available at the end of each iteration. At the last

step. the visible results of ANNS modules were presented.

5.3 Recoinimnendations for Further Research

This development of effort provided interfaces that thie end-users can simulate

this system friendly and the clientp)rogrammncrs can maintain the ANNS system

or add new neural network paradigms into ANNS easily. While this ideal design

of the ANNS system is a good beginning, there were certain features and neural

network paradigms lhat could not be implemenited due to time constraints. Thus.

the following ideas are provided as areas of potential research.

96

.5.3.1 Develop and Integrate all AAN Paradigm Components7 into AN.A'S.

AN.NS is too big, the timei at ARIT is too short, and tire learning curve is too steep

to attemp~t major design chaigcs in concert wvith thre GIUI repl)acemient for all tile NN

paradlignis I uniring onl tire per'sonial comp~uter version dut ing, this thesis cx dcl efroi t.

Trherefore, these remainedl jolbs would be finished by tile client-programinner's or next

thesis cycles.

5-3-2 .4ANetwork- Version of the A-iNNS. One major benefit of using N

window systemn is that it has built-in support for (list rilbut ing the NN pi ocessing

and display activities over several systems connected by a network; one X client can

connrect to multiple X display servers. InI words, users canl process the A-NNS system

fromn different remote resources by comp~uter networks if there is an existent net*%or k

version of ANNS.

.5.3.3 Portability Considerations. Sinrce C++ jprogrammring language has

become more lpopL)ltr and suplportedl as a progrdmunning environmient. ciarnging all

graphical modules of thle ANNS system to C++ wvill enhance the portability.

.3.4 Conclniswns

InI Conclusion, this thesis dlocumentedl the object-oriented design arid imuple-

mentatiorn of tile ANNS system. This work forms the baseline for future efforts at

completing an integrated AFIT Neural Network Simulator (ANNS) that call help

teach neural netwvolk theories (from end-users point of view) and help research thle

different kinds of neural network lparidigniis (fromn clihent-programiner point of x ie\ý

The A.NNS system. is a multi-application tool which allows rapid study of sog-

miental ion, vector qluanitizat ion. andI other Neural Network paradigins. A ccording~ to

the litertture review, there are onmlx \ er- few versions of thne neural net work simnula-

tor running onl Sunl workstations nowadays. As mnany orgamnizations are ptunhasirug

commercial softwiare p~ackages to p~erformr these types of applications, making A NNS

97

system with all kinds of NN paradligmin subsystems available could save the U.S. Air

Force thousands of dollars.

98.)

Appendix A. A NNS Users Manual

A. 1 faroduclion

The AFIT Neural Network Simulator (ANNS) is a development and tuto-

rial system for the study and research of artificial neural networks. It is also an

integrated and graplhically interactive neural network paradigoii hinulation system.

ANNS allows the end-users to select the optioutl neural network paradigmns and algo-

rithms for simulation, and allows the client-pi grairmers to add new neural netwoi k

paiadignis and algorithms to ANNS. This manual is primary for end-users; it

only describes how to use ANNS. Client-programmers should also refer to the ANNS

Programmer's Guide for the overall ANNS implementation and general procedure

for adding a new neural network paradigm to ANNS.

The ANNS system is intended to test feature extraction methods, compare

training paradigms, and help the user understand the limitations and utility of this

novel approach to computing. ANNS runs on Sun SPARCstastions using the SunOS

(Sun Microsystem's version of the AT&T UNIX operating system) and Openi llin-

dow environment at Air Force Institute of Technology (AFIT). There are several

control mechanisms provided, including GO simulation, STOP simulation, RESET

all parameters. variable simulation SPEED, single simulation STEP. and QUIT the

simulation. Other features include:

* a NN paradigm class selection from a list of available classes stored in the

paradigm library directory, such as back-propagation, hybrid training, radial

basis function. hopfield associative memory. etc..

* Dynamical simulations with color monitors.

* Multiple NN simulation windows, each of which with one master control panel.

0 Master control panel for modifying the input iaranieteis and control parame-

ters. and for monitoring 1 lie simulation stat us absocialed lwith each NN 1i)a atdigm.

99

* Simulation environment save and restore capability.

e Simultaneous comparison and control of multiple Neural Network (NN) paradigm

and algorithm simulations.

* Provide on-line help for every interface function and window.

* Provide error window to illustrate the error surface.

* provide simulation status window to show the static simulation status at each

training step.

A.2 Backgrounds Needed for Users

This section presents some backgrounds related to the paradigms in the ANNS

system.

A.2.1 Ideas of Computer Gambling. The idea of using a computer to

predict the outcome of football games, horse races, or the stock market has fasci-

nated computer enthusiast since the beginning of the digital age. Before computers,

statistic~ans tries to relate measures of performance to probabilities of outcome using

multivaiiant linear regressions and Bayesian analysis. But does it work ?

A.2.1.1 Can computers predict winners ? The answer should lie in

your own common sense. One thing computers can do very well is calculate probabil-

ities of future events based on a record of past events. Before neural networks, those

calculation were complicated to say the least. But with neural network, algorithms

for static pattern recognition, and function approximation, nice implementation of

prediction systems are possible. More importantly, the user doesn't have to know

the nitty-gritty detail to make things work.

Prediction is possible because neural networks relate inputs to output. With

a history of events, measurement of performance and a history of outcomes, it is a

simple matter to train a net to predict similar e ents. The prediction may be wrong,

100

but it can from the probability perspective, the most likely outcome. The trick is to

use the right inputs. Even the magic of neural nets cannot overcome the computer

age axiom, garbage in-garbage out.

A.2.1.2 Using the Artificial Neural Networks. Several type of predic-

tion problems have used neural network solutions. This involves what is called static

pattern recognition to predict probabilities and function approximation to predict

the behavior of indicators like the Dow-Jones Industrial Averages.

Using a neural network to compute these probabilities (and functions) is based

on two fortunate properties of the network. First, the output is base on a sigmoid

function which is a member of a class of functions know as conditional density

functions. The integral of the sigmoid function is a probability density function1

the work horse of probability calculations.

The second property is that the neural network can be treated as a black box.

The number crunching is always the same. The network training and propagation

rules are built into the computer program. All that is required of the user is to

prepare the input data, and turn the net loose. When the network has trained

enough to correctly identify the training data, simply propagate some unknown data

though the network.

Sound easy ? Well it is. Only one problem remains, picking the right input

data. A few sample problems might be in order here, but first, you need a little

background.

A.2.1.3 Pattern Recognition-A Three Headed Beast. Pattern recog-

nition is three part problem, segmentation, feature selection and classification. Seg-

mentation is to remove the event from the background. It's pretty easy for most

prediction problems, just read the paper. Event descriptions are right there. The

same is true for the feature extraction phase. Feature extraction is the process of

101

taking a meaningful measurement on the segmented event. Again, this is pretty easy,

since the paper is full of measurements which describe what took place at the event.

Words like batting average, and point spread come to mind.

Feature extraction has one small problem, the operative word is "meaningful".

A measurement of sunspot activity near Mercury probably would not be related to

the outcome of a horse race. It's easy for unrelated measurements to creep into the

pattern.

Pattern Recognition is to take a set of measurements of an event (a pattern)

together with a specified outcome, and predict the outcome for similar patterns

whose outcome is not known.

For a baseball game the pattern could be a set of numbers like the past win/loss

ratio, earned run average, team batting average and so on. The outcome would be,

(given the above information) winning or losing.

If the event is frozen in time, that is, a simple set of measurement and an

outcome the pattern is referred to as a static pattern.

Gambling can be performed in two manners: static pattern recognition and

function approximation. The first is an application which picks a winner based on

a set of measurements. The concept can be extended to include static pattern com-

parison. Pattern comparison would use the two sets of measurements, side by side,

more or less, to predict a winner. Function approximation takes a set measurement

and tries to estimate a actual number. The difference between the two might be

considered as the difference between, predicting the winner of a football game and

predicting the point spread. As you might guess, the second is quite a bit harder

than the first.

A.2.1.4 Static Pattern Classification. This section will examine three

types of problems, assignment of risk, generalized pattern classification, and com-

parative pattern classification.

102

Static pattern recognition works with a yes/no type of predictions. It would

answer questions like "Is this a good stock to buy or not ?" "Will this team go to the

superbowl or not ?" The generalization of this is standard classification problems.

Given a set of measurement, assign each set to a particular class.

A.2.1.5 Function Approximation. Function approximation takes a

pattern and tries to predict a future value of the function. Function approximation

has the advantage that it can use itself as the pattern. For example if one wanted to

predict the interest rates for next year, the input to the net could be time samples

of last years behavior of the interest rate function. At the same time, it could be

similar to a static pattern classification, except the output would be not be yes or

no but an actual number.

Many have tried to use function approximation for prediction, based on past

performance usually reporting poor results. Those reporting good result are generally

trying to sell neural network models or acquire grant money.

Better results are usually obtained by including more information from past

performance. One experiment predicted the stock market using a double input net

[11]. On one set of inputs a thne history was used; On the second set of inputs,

market measurements were used, i.e. interest rates, GNP, and so on.

A.2.1.6 Examplc:Good Stock/Bad Stock. Procedure: Get a year old

newspaper and select a few hundred of your favorite stocks. Take the measurements

listed there, such as P/E ratio, cost, change or what ever you can get.

Now get current papers and classify each of the stocks that went up as class

one and those that went down as class two. Now setup your data file as shown in

the example data file in section A.4.1.

Allow the net to train until the best accuracy is obtained. Now use the test

functions to enter measurements for this years data.

103

A.2.1.7 Example:Predicting a Baseball Game. One example tried

with simulated data is to examine a number of baseball games[il]. First, an eight

entry wide feature vector is made. The first four positions are four measurements of

the skill of team 1 (which played team two). The measurements are win/loss ratio

for the last ten gpnies, team batting average, earned run average and season win/loss

ration. Team 2 's measurements went into the last four places of the feature vector.

Those numbers wern liosen because they were available in the newspaper. Since

the outcome of the games are known, it can be used to train the network. Here is a

case which can statistically normalize the data. On the pretend data the problems

seemed trainable over a wide range of noise added to the input.

The real problem is that under the right conditions, any team can beat any

other team regardless of the features used to train the net. So much of the data used

to train the net will be contradictory.

When a network is trained with contradictory data, the output of the network

is much like a probability density function. For example, if there is a data set like

this (see data format example in section A.4A1):

2022
1 1.0 1.0 0
2 1.0 1.0 i

The first training point says that the input pair (1.0,1.0) should map to an

output of zero; The second data point says, that it should map to a one. The result

is (usually) the output will go to 0.5 for both, which might be interpreted as a fifty

percent probability of being either outcome.

A.2.2 Multilayer Perceptron Paradigm. The multilayer perceptron is a

feedforward network based on the work of Paul Werbos, and working separately,

David Rumelhart and James McClelland [19]. A Muitilayer Perceptron network,

sometimes called backpropagation, takes a feature vector as input and tries to learn

a correct classification by adjusting the interconnecting weights between layers of

104

independent processing units. By presenting feature vectors and desired outputs to

the network, interconnection weights are adjusted based on an error term generated

by the difference between what is desired and what the net actually produced. The

computation elements for a neural network model are called perceptrons. NN comes

in a variety of flavors. The most common NN is the backpropagation perceptron, but

other common types include Kohonen nodes, Counterpropagation nodes and Radial

Basis nodes. Some definitions refer to NN as always being backprop, here the term

will be used in a more general sense.

A.3 Getting Started

A.3A1 Set Path. Set your UNIX path variable to include the ANNS exe-

cutable directory. So far, there is only one executable ANNS in /home/hawkeye3/cwu/ANNS/bin

directory. Copying the executable ANNS to your own directory is strongly not rec-

ommended, because it consists of several executable subsystems and comsumes a lot

of memory space. Example of setting path:

set path=($path /home/hawkeye3/cwu/ANNS/bin)

A.3.2 The Mouse. The mouse is used for almost all interaction with ANNS.

ANNS specific uses are:

"* Right Button: pop up menus and panel selectors

"* Middle Button: not used

"• Left Button: simulation control, panel buttons

The normal OpenWindows functions for the mouse buttons apply as well, such as

click (push and immediately release) or depress (push and hold until some action is

complete).

105

A.3.3 The Main Window. After setting the path, typing ANNS at the

UNIX prompt and hit "Return" key will come up with the ANNS main process

window. (See figure 43)

Figure 43; Main Window

106

A.3.4 Iconify ANNS. This action causes ANNS and all simulations to

stop and become an icon. (See figure 44) The icon may be moved anywhere on the

screen. ANNS is deiconified by clicking the right mouse button on the icon image.

Figure 44. The ANNS Icon

A.3.5 The Main Menu. ANNS uses menus to allow users to make a

selection from among several choices. Users pop up menus by depressing the right

mouse button. Generally, menus remain visible only as long as the right button

remains depressed. While a menu is visible and the right mouse button is depressed,

moving the cursor over a particular menu entry causes that entry to be highlighted.

Releasing the right mouse button with a menu item highlighted selects that menu

item.

A menu entry with a right-arrow indicates that a pull-right menu is associated

with that menu item. Moving the cursor over the right-arrow exposes the pull-right

menu from which a selection can be made. Usually, the first item in a pull-right

menu is the default selection for an item with a pull-right menu.

Press and hold the right mouse button with the mouse pointer anywhere within

the ANNS main window to pop up the main menu. There are five choices in main

menu:

* Neural Network (NN) Algorithms Window

* Simulation Central Control Window

107

"* Environment Control Window

"* Exit ANNS

"* Help

A.3.5.1 Neural Network (NN,) Algorithms Window. To open a new

NN algorithm window, highlight the selection, "Neural Network (NN) Algorithms

Window". Move the cursor over the right arrow to reveal the NN paradigm class

menu. Highlight one of the available NN paradigms and release the mouse button. A

NN algorithm window with a default input parameters and NN algorithm simulation

window will appear on screen. The default input parameters are shown on the

configuration window by clicking the "Configuration Options" panel on the algorithm

window. If there is no change desired on the algorithm window (or master control

panel, see figure 45 and 46), simply click the GO panel item or click anywhere on

the simulation window, and then the simulation runs with graphical view display

on simulation window. (See figure 47 (Be sure the setup data file is in the same

directory as this simulation runs)

A.3.5.2 Simulation Central Control Window. Clicking this item,

the Simulation Central Control Panel will appear. This panel provides a means to

simultaneously control the simulations in all opened simulation windows. (See figure

48 and 49)

A.3.5.3 Environment Control Window. This selection causes the

Environment Control Panel to appear. This panel provides a means for saving the

current simulation environment, restoring a saved environment, or killing a saved

environment. The environment includes all users options currently selected: window

size, window placement, and NN algorithm parameters. The environment control

panel is shown in figure 50.

108

Figure 45. The ANNS Master Control Panel

109

Figure 16. '1 he ANNTS C'onfiguraaion Control Window

110

Multilaver Neural Net * eie upu vrg
Class 1 Sample 2 eie utu vrg

File: xor~dat Actual Output C ou n t: 7 9

Exem-Tplars 0-11 Yp

lip2

:VJ,

IgLi. 000.0

Go-od 050.00 Gnod 050.00

F -igure 47. Smuitlation XV izdow

___k_ __

F-igure IS. IThe AN NS Central (Control Panel

.,.: . ..-..,.,. .., ... i.. . -- -----

24 WE

• :"•' " :-] " "

Figuree! 19. w S ltn ou l S . Ml utlayer o NeuWia Not

Mutia yerN Saf e ae U ~rn d "c tput Ave'age I C3- eieerau 1

Nl, xcida -gF ctul Output COW0I 2 0 ;iie ccdat Actual Outpu Cow~t 1

:'S

xg
o/

.......... Iw

Figure 49. Two Simultaneously 5; mutlation, Windows

112

I i.,il(5O. The :\NNS Enviroment (Contrvol Kaiel

A_3.,.I 1z EA11 AAYS Thlis it eni Will end1(thle simulalt ions amid exNit

ANANT. Ilhe user is firt notified to coiilrinn time exit. (See figure 51)

A.3.5.5 llcIJ) [his item displays a help) window that briefly expla~ins

thle 11Oious actions& the [unction of each manin menu it ('H. and how to open a NNX

algorit!hQin window. (See figure .52)

M136 Aasic r C ontrol /9 ancl. Eigure 15 shows the master routrvol panel.

lhijs panel is divided ha o sevei al sec~ til epeindiig on the qŽpe of NN pardigm.

*Conitrol Section:

j) roVides severald panel &W en>fo coid vol Iinig thle sinmil at ion. '[le II EL P panel

itemi is for oni-line help in iehing (lis"ussing how t o use I lii, inasem (out tol jIiie

and what t he fuinct ion is frw each pauuel item. The ((and SIM C)p anie Vit 'il

are*(fin startimig Ilie, siinulat ion aimid pausing t li siiulat Wio. TeIN REKSU[panel

it em is for re-setii iig all parameter's. T'he Q [II- 1panel it em is to kill the sinil-

ulation amid quiit lie mastri rout ol paiiel. The "Shiow Ndspanel ii cill

conisist, of a 1)111 -down menu which i n I tdes O.-\ IIodes . -Lowev Weight.s.

-1ppei Weiirht C' adi --Oiiiput Wei" lt'? mnu tm.Ec fm esi

foi (displaying; 16l pressini value of noWdesu[iimg OiWN=, i Du.Te -Simiiiilt ion

St at us \Vindoxx -. pael itMmi is fIn shojwing t ie(rmmia stati As oliinialaion. IQ-

a•-__ -•-_L_ -Z • -'" • -•'" • - -

Figure 51. Exit Notification Window

11 ,

"b 'tt &WIN% "'d

P P

*YPU owl . 04-011 n~u

Man 'A'k,

"A'

t~ ~ ~ .h...R:...

ANA'

D"" WAS

NNA" I' A'r

th,

"'>

'01 o.0; -ie1(1)\ id~

11.5 yW~be

clicking the "HIT ME" panel item, the Status Window will appear on screen

which displays all the values associated with the currently simulation status.

The "Simulation Speed" slide panel item allows user to control the variable

simulation speed, or select the "Single Step" panel item for step-by-step sim-

ulation.

"* Algorithm Options Section:

This section provides the user choice of NN algorithms for simulation. After

Changing the NN algorithms, The simulation associated the changed algorithm

does not take effect until the RESET panel item is clicked.

"* Error History Window Control Section:

This section is for showing the Error History Window or closing the Error

History Window. The Error History Window is a graphical window which dis-

plays the progress of the network as traing progresses. Also, after each display

cycle a tabulation is made to determine the percent correct for both training

set and the test set. If the output of the network is within 20 percent of the

desired calue for every node, a counter is incremented for the Right indicator.

If the highest output corresponds to the correct node for that test case the

Good counter is incremented. These values are displayed for the training and

test sets as a percentage correct.

"* Configuration Control Section:

This section is for input or change all kinds of parameters associated with the

NN algorithm. Different NN apradigms have different configuration parame-

ters.

A.14 Setup

The first step before simulating the NN algorithms is to set up the desired

network topology (if the default input parameters are not desired). Select the net

type, then type in the number of nodes (computational units) in each hidden laver.

I t6

A weight file can be entered at configuration control panel. If there is no previous

file enter "r" for random weights to be generated by the system. This allows each

input exemplar to rerpresent a cluster of data. Make sure that if you try to restore

weights. the weights came from a similar problem. The size of the input and output

must be the same as when the weights were stored.

A.4.1 Setup Data Files. The training file contains all the data for testing

and training the neural network. The training file name is entered at the prompt of

"Data File" panel item on the configuration control panel. Try input files: xor.dat

and test.dat. A training file can be created as a standard ascii file using a standard

text editor.

The basic format is as follows:

The first line define the number of training vector pairs, the number of test

vector pairs, the number of input features, and the number of output classes. After

that, each exemplar is listed in order. The first number is arbitrary and ignored by

the program. The only purpose is to identify the exemplar number. Next list each

element of the exemplar vector xO,xlx2 . . . x(input-1). The last element is the

exemplar class type.

Exemplar class types must be sequential, i.e. 1,2,3,... etc. The first, class type

must be a one and no numbers can be skipped. Classes can be randomly mixed. To

allow flexibility, very little error checking is performed on the input file.

Example:

20 20 3 2
1 3.4 5.4 2.1 1
2 5.6 2.3 7.1 0
3 7.2 8.1 6.5 1
4 3.3 4.1 9.1 0

117

40 4.1 8.5 3.2 0

In the example above there 20 training exemplars and 20 test exemplars. This

first class must be labeled zero, the second labeled one etc. The test exemplars are

those set aside for testing the generalization capability of the net and are not used

in training. The input vector is of length three and there are two distinct output

classes.

A.4.2 Backpropagation Paradigm Input Parameter Options. The following

parameters adjust the network configuration before training:

* Saliency: You have three choices: Saliency Off, Weight Saliency, or Second

Order Saliency.

* Output Function: Choice of Squashed Output or Linear Output. The Squashed

output uses a sigmoid function, and the Linear output uses a linear function for

node mathematics (for an explanation of node mathematics, see Maj Rogers

and ask for a copy of the book: An Introduction to Biological and Artificial

Neural Networks for Pattern Recognition. [32]

* Output Format: Choice of Class Output, Binary Encode, Vector Output,

Identity Output, Identity w/Eigen, Hold One Out, RUCK, and TIME Sequen-

tial Data. In most cases use Class Output.

* Normalization: Choice of No Normalization, Statistical Normalization, Enz

ergy Normalization, Spread Normalize, Fisher Linear Normalize, Karhunen-

Loeve Normalize, Karhunen-Loeve AMean, Principle Components, and Normal-

ize Outputs. Statistical Normalization forces all inputs to have the same rela-

tive ranges and thus is the preferred choice, unless you pre-normalize the data

before running Neural Graphics.

* Layers 1 2 3: The first entry should be the number of hidden nodes minus

one. For example, one hidden layer between input and output requires an entry

118

of two followed by a space. The next entry should be the number of neurons

or nodes as they are called in the first hidden layer. If you have more than

one hidden layer, put a space after the first hidden layer number and input tile

number of neurons for the next hidden layer (moving in the input to the output

direction). If you have only one hidden layer, enter the number of nodes in it

followed by a space and a zero.

* Stop At: To change the total number of iterations (not epochs), enter a

number on the keyboard. For example, when configured for 540 training vectors

and 60 test vectors, we would have 600 iterations for each epoch. Multiply the

number of iterations by 20-50 times to get a first-cut approximation. You will

have to experiment to get desired results (a value that causes sufficient training

Of the data, yet doesn't over train on the data as indicated on the error curve).

• W4eight File: Click on this panel to input the name of the file that you want

to read weight information from. Type the name of the weight file on the

keyboard. WARNING: Leave the default file name 'random' under this panel

unless you have a weight file that you are importing (in the proper format of

course); If the program crashes, check to make sure 'random' is under this

panel! Note: A weight file is created every time you train a network; the file

created is named 'weights.temp'. ",

* Data File: Click on this panel to input the name of the data file you want to

train from. Type the name of the file on the keyboard.

e Statistics: Click on this panel to input the name of the data file you want to

train from. Type the name of the file on the keyboard. Network statistics will

be written to °his file which are important for plotting the total error versus

display updates. -,

* Average: This allows user to train through the data several times with new

random weights each time (the random generator is reseeded at the start of

each training session) and combine the results into an average. Click on this

119

panel and input a number at the keyboard. Usually we just train once, so

input a '1' value.

* Learning Rate: Leave set to '1'; the code is 'hard-wired' to 1 over(no. nodes

fan-in).

* Display: This number represents how often the screen is updated with new

information during training and testing. To change this number, type the new

number at the keyboard. (start with about '1000').

* Noise: Click on noise if you want to add noise to the data. A number greater

than zero will add noise (i.e., noise = 1 gives a random flat distribution). Zero

indicates no noise. As a suggestion, do not use noise on your first training

attempt.

A.5 Run simulation

Before a simulation is running, default values are supplied. 'To accept a default,

just hit the GO panel to start simulating the selected NN algoriuthm. The simplest

way to learn about the ANNS is just to accept all the defaults input parameters

which usually show up on the configuration control panel. Just hit GO panel, that

should get the default model running with reasonable default configurations. Try

testing each of the NN algorithms on the NN algorithm menu to see what happens.

Try re-running the program with values other than the defaults. Use different sized

nets, different numbers of hidden layers, different weight files, different data files and

hit RESET panel and then GO panel to restart simulation.

Once, you feel comfortable making up your own net configurations, try some

real work. Make the computer learn something. You might want to start a multilayer

perceptron model, usually call backprop. Backprop comes in a variety of flavors, the

models used here are two of the most commonly used, backprop and conjugate

gradient.

120

Appendix B. ANNS Programmer's Guide

B.1 Introduction

The AFIT Neural Network Simulator (ANNS) is a development and tutorial

system for the study and research of artificial neural networks. It is also an in-

tegrated and graphically interactive neural network paradigm simulation system.

ANNS allows the end-users to select the optional neural network paradigms and

algorithms for simulation, and allows the client-programmers to add new neural net-

work paradigms and algorithms to ANNS. This manual is intended for client-

programmers; it describes the overall ANNS implementation and provides a gen-

eral guide for adding new Neural Network (NN) paradigms into ANNS. Before doing

that, Client-programmers should also refer to the ANNS User's Manual for better

understanding of the operations of ANNS. End-users should refer to the ANNS User's

Manual.

The ANNS system is intended to test feature extraction methods, compare

training paradigms, and help the user understand the limitations and utility of this

novel approach to computing. ANNS runs on Sun SPARCstastions using the SunOS

(Sun Microsystem's version of the AT&,T UNIX operating system) and OpencWin-

dow environment at Air Force Institute of Technology (AFIT). There are several

control mechanisms provided, including GO simulation, STOP simulation, RESET

all parameters, variable simulation SPEED, single simulation STEP., and QUIT the

simulation. Other features include:

NN paradigm class selection from a list of available classes stored in the

paradigm library directory, such as back-propagation, hybrid training, radial

basis function, hopfield associative inemory, etc..

* Dynamical simulations with color monitors.

* Multiple NN simulation windows, each of which with one master control panel.

121

* Master control panel for modifying the input parameters and control parame-

ters, and for monitoring the simulation status associated with each NN paradigm.

* Simulation environment save and restore capability.

e Simultaneous comparison and control of nmltiple Neural Network (NN) paradigm

and algorithm simulations.

* Provide on-line help for every interface function and window.

9 Provide error window to illustrate the error surface.

* provide simulation status window to show the static simulation status at each

training step.

B.2 Backgroznd NlSeedcd for Programim ers

This section provides some recommendations for client-programmers to strengthen

the needed backgrounds for ANNS.

First of all. a client-programmer should have experience with ANNS as end-

users and be familiar with the terms and concepts associated with artificial neuial

networks, then the following references are recommended:

* Programming with C [81: Everything was written in C prograimming language

for ANNS.

e UNIX Operating System: ANNS is running on UNIX operating system envi-

ronment.

* Introduction to the X Window System [15]: What is X Window System ?

* XView Programming Manual [9]: The Graphical User Interface (GUI) of

ANNS was implemented using XView widget sets.

* Sun View Programmcr's Guide [/7']: Some of the graphical routics of XView

were derived from SunView.

122

* ANetwork Programming [43]: The concepts of using UNIX sockets for integrating

the ANNS system.

* SunOS Reference Manual [/16]: ANNS is running on Sun Microsystem which

are controlled by SunOS.

B.3 Overview of AIVNS

This section provides an introduction to several topics of interest to ANNS

programmers and NN paradigm simulation developers.

B.3.1 Objects Associated with X Window System. This section provides

an object model (associated with ANNS system design) of the X Window System,

as an example to illustrate the concepts of object-oriented design and X Window

System. Figure 53 describes many object modeling constructs and shows how they

fit together into a large model.

Class W'indow defines conlmon parameters of all kinds of windows, including

a rectangular boundary defined by the attributes xl, yl, x2, y2, and operations to

display and tindisplay a window and to raise it to the top (foreground) or lower it

to the bottom (background) of the entire set of windows. Panel, Canvas, and Text

window are varieties of windows. A canvas is a region for drawing graphics. It inherits

the window boundary from n Window and adds the dimensions of the underlying

canvas region defined by attributes c.l. cyl, cx2, cy2. A canvas contains a set of

elements, shown by the association to class Shape. All shapes have color and line

width. Shapes can l)e lines, ellipses, or polygons, each with their own parameters.

A polygon consists of an ordered list of vertices, shown as an aggregation of many

points. Ellipses and polygons are both closed shapes, which have a fill color and a

fill pattern. Lines are one-dimensional and cannot be filled. Canvas windows have

operations to add elements and to delete elements.

123

Window

xl.)l x2.y2

display
undispLsi
raise
lower

Scrolling Canvas Pane
window exei iternaii

c-.2 cy2 notify
e-oltit Event

adld-cemrnent

[aflionscroll d elete- eleru ent P el[action _

Panel
item

Ley-boa
event

elexu] i Vhaplelabel

fu color i em

licurrent

winiow Scrolling
windowCanvas$

string Lns Crise

iFgerure ri3. O e Mtrodel item o f Xys

4currentt _ _ . !choice choices
se !polyon [Choice

r~lips Poygo entry

a~ bd raw s 'tring

"a, Nrtlces

draw

SPoint

x.y

Figure 53. Object, Model of X Window System

124

Text window is a kind of a Scrolling window, which has a 2-dimensional scrolling

offset within its window, as specified by ,r-offset and y-ojfsct, as well as an operation

scroll to change the scroll value. A text window contains a string, and has operations

to insert and delete characters. Scrolling canvas is a special kind of canvas that

supports scrolling: it is both a C(anvas and a Scrollih window. This is an example

of n a/tip/C inh erita nce.

A Panel contains a set of Panel ilem objects. each identified by a unique item

name within a given panel, as shown by the qualified association. Each panel item

belongs to a single panel. A panel item is a predefined icon witl which a usem can

interact on the screen. Panel items come in three kinds: buttons, choice items. and

text items. A button has a string which appears on the screen; a button can be

pushed by the user and has an attribute depressed. A choice item allows the user to

select one of a set of predefined choices, each of which is Choice entry containing a

string to be displayed and a value to be returned if the entry is selected.

When a panel item is selected by the user. it generates an Even-i. which is a

signal that something has happened together with an action to be performed. All

kinds of panel items have notify erent associations. Each panel item has a single

event, but one event can be shared among many panel items. Text items have a

second kind of event, which is generated when a keylboard character is typed while

the text item is selected. Association kcyboard cVC7tl shows these events. Text items

also inherit the notify ceent from superclass Panel itm: the noatiy event is generated

when the entire text item is selected wit h a mouse.

B.3.2 ANA'S Architecture. ANNS usc3 three level of execution linked bV

UNIX sockets to implement the NN simulation system. Figure 54l shows the idealistic

abstract model of ANNS and figure 55 shows the architecture of ANNS. Sockets are

the InterProcess C'ommunication (IPC) mechanism provided by the UNIX operating

system. Each level is a self-contained, executable system. Without the sockets. each

125

individual class system in the ANN'S systemn could be run. stand-alone. The thiree

levels of execution are:

Psradigru Pidigin
Class #1C~is #

Inputs Inputs

Ag-thNN Paradigm Library AltihNN

Graphical Graphical
Viewq Views -

_________{ ANNS SystemI

Environment Manager Library Manager

~U~r~iterfClie7nt-Programmer
End-ser nterac~

Figure .54. The Idealistic Abstract M~odel of ANINS

e The ANXAS5 man) pirocess.

The ANNS main process is the highest level interface to AY'NS. It acts as

the environment manager and creates main process window. the main mi-enu

wvindow, the centrial control window, the envir'onment control window, exit

Windlow. help window and a means for starting -NN' paradigmn simulations.

* PI C A."VNS C0fl11111O1? library.

The middle level of execution is the NN paradigm-specific windlow-lbased prIo-

cess called A NNS common library. E'ach NN Iparadignm componlent. interfaces

126

ANNS

Mail)naio Help

WindowWindow

MainCentral Environnien
Control Control

MeuWindow Window

UNIX~o

Socket

Common
Libra (nainO)

Graphical Viiew Help
Window Master Control Window

UNIXUNIXUNIXUNIX
Socket Socket UI Sokt Socket Socket

More M~ore
padguHopfield Kohonen puarditins

rpPropagationt Maps

Multilayer Perceptron Hybrid Propagation Sales Traveling Problem

F.igure 55.5 'The Architecture of AINNS at t he Top Level

127

with the common lilbrarv for slirulatior control. Theli common librai V prox ides:

the graphical v'iew windlows for viewing the d\ nanuically graphical display, the

master control window for monitoring and modifying thc p~aramleters that af-

fect the simulation, and time online hiel)) window for under standing the use of

all the parameters in the master control window.

The/c ~V~ palrldigins.

Thiis is the lowest level of execution which is t ranslparent to thce users. Each NNT

p~aradhigml has three wvindlow associated with the ANNS common lib~rary. The

graphical view windlow is directly under tilie paradigiv's control. T'here is only

one N\N paradigmn (niult ilayer feedforward networks using backpruopag~ation) imi-

jplemnented so far. including eleven algorithms: B~ack Propa~gation, Back P~rop

NV/Momentumn. Second Order Learning, Cotrell Identity Net. Tarr/orl

Identity, Auto-Add a Layer, GramiSchmidt Network, Gram-Schmnidt ID Net,

BrainMaker. Rtadial Basis, and Conic Basis.

B.3.3 Object Creating and Mappfing Using XViczv.

B.3.3.1 Objccls in N View. There are eight basic object types in

XView, Three of these. Gcncric ObjI.ccls. hl'indoirs and Opcilwin~s are core classes

andI are not directly instdamitable Ib) the user. The memaining five are dliscussedl below.

The basic Window enltity is thle ft (in. All other windows ate classified as, ,tibiwindoins

andI must be attached to frames.

*Fr-ames

A frame is the basic window object to which thme p~rogramnmer has access. There,

are two flavors. a base frame. andI a pop-nu) frame. A base fm'amei is at frame

with no p)arent. All other frames are subfr-amnes. so a 1)01)411) is anly frame

which is not the base frame. E~ach application has one base frame. T[here are

no (preset) limits on thle number of sulbframes. A fratne is characterized by a

border, which is managed by the winidow manager. andl ami interior which is

128

configuired and inanaged by thc programmier. The window manager cont rots

resizing, iconification, de-iconification. refreshing, qutitting, etc. All XWiew

windows are fraimed.

"* Canvases

Acanvaos .subw,indowi is the \View graphics window. It s size is independent of'

thle owning frame. ['he entire dIrawing stirlace is calledI tme paint wifiloa, and

the \visille p)ortion is thle miv wvindowv. Ntiultiple. scr'ollab~le view\s of a canivas

are allowed within a frame.

"* Text Windows

A tcxt subwrindowr prov'ides b~asic text editing capabilities using the OPEN7-

LOOK text editing model. This window is a specialization of tile canvas su~b-

window with text editing calpabilities ad~dedI.

"* Menus

Mlenuis are not adtnally XN'iew windlows, but they are botind to windows at.

display timie. XView~ supp~orts a fuill range of mienui types and options sulch as

puill-down, 1)0p-nu) and puill-right. Mlenuis canl be plinnd to allow theml to stay

on the screen after the selection is made,

"* Scrolibars

Scrollbars are interesting objects. -hey (-ami exist independently, or b~e att ached

to stibwind(ows. Scrollbars are windowsý (becauise they arc visible) ltnt the% are

uisually thoughit of as p~rop~erties of stibwindows. Scrollbars do not manage the

objects to which they are attached. it Is the programmer's responsilbilily to

make thle screen ul)(lates associated wvith scrollbar actions.

An imp~ortant feattirc of X\~iew that isý not a window is the Pancl. Panels implemenit

thme OlPENLOO1K conltrol arui. Panels maniage pane] itemns. e.g. buttons, sliders, text

fields. and other forms of immpu-tt ing data. The mnotiv-ation for p~anel,, is to prov-ide a

mechanism fom p)ropagat ingT events, especially for objects which do imot havw a wimndow

associatedl them. Pamnels are very important in) XView. For example. an applica~tion

129

frame with no subwindows attached cannot catch interior niouse events. Attaching

a panel to the frame allows these interior events to be propagated.

B.3.3.2 Object Crcaling and A/appig. XV'iew provides a very clean

interface to it's object set. There is a coinnion set of functions that allows users to

manipulate any objects by referencing the object handle. The functAions are:

"* xv-inito:

Establishes the cunnection to the server, initializes the Notifiet and the Defaults/Resource-

Manager database. loads the Server Resource Manager database, and parses

any generic toolkit command line options. Called once at the beginning of the

program.

"* xv.create(:

Creates an object. Every XView object is created with this function.

"* xv-destroy(:

l)estroys an object.

" xv.find(:

Searches for and returns an object with the specified parameters. If none is

found. the object is created.

"• xvget(:

Get the value of the specified attribute for the specified object.

"• xv-set):

Set the value of the specified attribute for the specified object.

Using these, six routines. programiiiers can create and inanipulate the entire XView

object set for ANNS.

B1.3.4 Al\NNS Directory Structure. So far, the ANNS main directory struc-

ture consists of several subdirectories which are (see figure 56):

130

ANNS

[ANNSmain

bin include

ANNScommon

1 n
NN NN

Paradigm Paradigm
(BackProp)

(existing)

Figure .56. ANNS Directory Structure

131

B.3.4.1 ANNSmain Subdirectory. This sundirectory includes all the

source codes for the ANNS main process. It provides an environment in which all

NN paradigm simulations can be controlled. The files in this directory are:

"* AIVNSmain.c

creates the ANNS main window and ANNS icon image, sets up the control

environment, and processes the mouse events.

"* A NNS Utility.c

contains subprogram modules to get the screen resolutions, dispatch the win-

dow events, filter the input characters, get the directory of input files, process

user warning cases, and create a color table.

"• ANNSrmainmenu.c

creates ANNS main menu.

"* ANANScontrol.c

contains the functions for setting up and controlling a centralized simulation

control panel. This control panel is in ADDITION to the usual simulation

control provided by the specific NN algorithm class. The panel is OFF by

default. Activation has no effect on simulations other than providing another

means of control.

" A. NNVSen vironm ent. c

contains the subprogram modules to create ANNS Environment Panel and to

save and restore environments.

* ANNSwindows.c

contains the functions for defining, opening, and closing NN algorithm win-

dows.

Each of these modules above has an individual header file with it for controlling

global parameters.

132

B.3.4.2 ANNScommon Subdirectory. This subdirectory presents an

interface for adding NN paradigms to ANNS by providing all the common modules

for each of NN paradigms. After compiling all the files in this directory, an ANNS

common library archive file called libANNS.a is created in the bin subdirectory for

next level of compiling and execution. The NN paradigm class simply provides the

simulation Interesting Events (IEs) which are operation components of the simulation

to connect to this common library. Figure 57 shows the communications of the IEs

between a NN paradigm class and this ANN common library.

NN Paradigm Componen ANNS Main Process

IE Simulation
Generator GO

if IE END[IE gure ..7 .Te s C Simulation
Process dc a

Sinmlate 1GetNeural Net 1.• i • ... E

Update]
Graphical 1E

View
Generator Udt

.]•____.Simulation

Status

, Graphical View Window

Figure 57. The 1i~s Communication Model

The files in this directory are:

133

"* ANNSconiinon.c

is a basic shell for all NN algorithm simulation packages. Each NN paradigm

simulation links to this file. This file provides the main routine, establishes

the communications link to ANNS, creates the master control panel, simu-

lation status window, error history window, and simulation canvas. Client-

P--ogrammers simply provide NN algorithm, and operation components of the

simulation (IEs) which link to these functions.

"* ANNSparamcters.c

contains all subprogram modules to read simulation parameters, save simula-

tion parameters, restore simulation parameters, and send all the simulation pa-

rameters to ANNS. All parameters depend on the NN paradigm class-specific

interesting event structure (IE-STRUCT). IESTRUCT is referred to as an

ADT, but its internal structure is not important. The NN paradigm class-

specific functions must provide a macro or a function to copy IESTRUCTs.

"* AINIV.5aster. c

contains subprogram modules to create master frame, set up control section

of the master control panel, set up simulation status window, and get all the

control parameters.

,, A NN•Sgraph ical lView, c

contains subprogram modules to set up the simulation canvas, handle l~s.

simulate NN algorithm, control simulation speed, control multiple graphical

view window.

e AINNSUtility.c

contains subprogram modules to get the screen resolutions, dispatch the win-

dow events, filter the input characters, get the directory of input files, process

user warning cases, and create a color table.

Each of these modules above also has an individual header file with it for

controlling global parameters.

1,34

B.3.,1.3 bin Subdirectory. This subdirectory contains all the exe-

cutable files, archive files (common library), and one ANNS NN paradigm class file

called .annsParadigms. The .annsParadigmns file lists all the available NN paradigm

components and the names of executable files for each NN paradigm component.

Client-programiners must add the name of the new NN paradigm component and

the name of the executable file (associated with this new NN paradigm component)

to .annsParadigms file. ANNS need not be recompiled if this file is modified. This

file will be called when the ANNSinainmenu.c is executed. The .anni.Paradgyms file

is shown as follow:

Multilayer Perceptron Network, /home/hawkeye3/cwu/ANNS/bin/Test
Hopfield Net , /home/hawkeye3/cwu/ANNS/bin/HopNet
Hybrid Propagation, /home/hawkeye3/cwu/ANNS/bin/HybNet
Kohonen Maps, /home/hawkeye3/cwu/ANNS/bin/Kohonen
Salese Travel Problem, /home/hawkeye3/cwu/ANNS/bin/TSP

/****** Format for Above ********/

(1) List the name of a new NN paradigm, followed by a comma, and the name of
the executable file. Only one NN paradigm per line

(2) After tilde , nothing is read
1*..** * * **** ** *** ******** *** *** ****** ***$** *** ** ***0*$* *** ***** *$***** *****

* AFIT Neural Network Simulator (ANNS)

"* DATE : 13 Feb 1993
"* VERSION: 1.0
"* NAME - annParadigms
"* MODULE NUMBER:
"* DESCRIPTION : This file consists of a list of the NN algorithm
* components available to ANNS
* There are two lists:
* (1) .paradigmName = The name of each NN paradigm; used
* in menus and as the window titles

* (2).executableFile = The name of an executable file
* for the specific NN paradigm; used by
* ANNS to execute a simulation.

* The Client-Programmer must update this file when a new NN paradigm is
* added to the ANNS system. ANNS need not be recompiled if this file is
* modified.
"* ALGORITHM:
"* PASSED VARIABLES: None

"* RETURNS: Nothing

1. 3.4.4 include Subdirectory. This subdirectorv contains header

files, and icon inage files for ANNS.

o ain sD~fincA.h contains all included system header files and predefined con-

stants.

135

* coin nionDefines.hi contains defines and types shared b~y all the "paradigmnCoin-

m-on" andl "paradigm-Spcci tic" functions.

B.4 General Procedure for Adding a N'ew NA' Paradigin

A existing NIN Iparadigmn class is p~robably the b~est guide for adding a new

NN paradigmi to ANNS. Client-programmers may take the existing NN paradligm-

directory. like BackProp. as an example. Assuming that a client-progranimei' has a

NN p)aradlignm coded in C language (graphical routines was codledl using X\'iew), the

following sections are suggested procedure for adding the N.N paracligin to ANNS:

B-.1. Create a work-ing dircclory. There is a template directory. called

n6WIParadigm?, in the A.NNS main dlirectorv. Use this (lirectory as a guidle for de-

velopiment by cop)ying this directory and changing the name of this directory to the

new paradigmis name undler the ANN-"S m~ain directory. Ther'e are tot ally seven files

in this template subdirect ory. AlJa kjc Ne itPa radigin .J, 13G-iainx c. lgorit In.c

Graphical I icw.c. and Conlrol.c. and Inilial.cflesides these files, add all the source,

files of the new N,\ Paradigmn to this dfiiect orv.

1. Mlake file is an utility for lowest level of compiling. The exam-ple of Mlakefilc is

as following:

* FILENAME -,Makefile
* DESCRIPTION :Makefile fo:. the Neu UN paradigm

ParadigmNAME = NewParadigm

#Set the base path to the directory in which the executable will be stored

BASE = S(HOME)/ANNS
BIN =$(BASE)/bin
INCLUDE =(BASE)/include
ParadigmPRG =$(BIN)/$(ParadigrnNAME)
ParadigmBG =(BIN)/W(aradigmNAME)BG

LIDS = -Bstatic -lnet -1ANNS -lxview -lolgx -lXli -lsuntool -isunwindow -lpixrect -1m

CC =cc

1:36

CFLAGS = -IS INCLUDE) -1$ (OPENUINHONE) /include -tS(OPENWINHOME)/lib

LDFLAGS =-L$(BIN)

DEPPLAGS = -MM $(CFLAGS)

*NeuParadigm files

*add Neu NN paradigm object files here --like the Backprop paradigm

*NewParadigmOBiS -_GraphicalVies.o Algorithms.o Control~o Initial.o

NeuraradigmflBiS = GraphicalViev.o Algorithms.o Control.o Inrtial.o backprop.o\
backprop2.o backprop3.o radial.o backprop8.o conjugate.o\

preprocess.o batch.o cluster.o backprop4.o backpropi o

backprop6.o backprop7.o poly.o random.o normal.o test.o\

jacobi.o nrutil.o eigsrt.o invert.o lubksb.o ludcmp.o\

gaussj a initialize.o makeinput.o paradigm-o saver o

general.o display.o graphic.o

*add New NN paradigm files here -- like the Backprop paradigm

VNewParadigmiftCS GraphicalView.c Algorithms.c Control c Initial.c
NewParadigmSftCS = GrsphicalViev.c Algorithmsxc Control.c Initial.c backprop c

backprop2.c backprop3.c radial.c backprop8.c conjugate.c\
preprocess.c batch.c cluster.c backprop4 c hackpropb c
backprop6.c backprop7.c poly.c random.c normal.c test-c\
jscobi.c nrutil.c eigsrt c invert.c lubksb.c ludcmp c\

gaussj.c initialize c makeinput.c paradigm.c saver.c

general~c drsplay.c graphic.c

BG0835 = 8G~main~o

BGSRCS = BG-main.c

SRCS = S(NeuParadigmSkCS) S(BGSRCS)

CR35 = $(NewParadigm0BiS) $CBGDB3S)

*Compiling rules

S(ParsdigmNANE): $(ParadigmPRG) $(ParadigmflG)

$(ParadigmPftG): $(NevParadigm083S) S(BIN)/libANNS.a $(BIN)/lrbnet.a
$(CC) S(CFLAGS) S(LDFLAGS) -o S(ParadigmPRG) $(NewParadigm0BiS) S(LIBS)

$(ParadigmBG): S(BGOB3S)
$(CC) $(CPLAGS) S(LDFLAGS) -o $(ParadigmBs) $(BGOBJS) $(LIBS)

Control o: Control.c Makefile

$WCC $(CFLAGS) -c Control.c -DI3GFILE="'$(ParadigmBG)"'

2. c wvPa radlign. h

is a header file for defined gloIbaI parameters and defined constants (add what

the New Paradigm has to this file).

137

3. BG-main.c

is the main background procedure thalt drives the graphical display by selecting

one of the algorithms and delivering interesting eveiut (IE) announcements to

the evoking routine on request. The example file is as following:

* AFIT Neural Network Simulator (ANNS)

* FILENAME : BGmain.c
* FUNCTIONS:

* main() - establishes IPCs. Accepts parameter
* structure from the main algorithm routine.

* INTERESTINGEVENT() - IPC function; sends the IE operations to the
* main algorithm routine, after a request has been received.

#include <sys/types.h>
*include <sys/socket.h>
*include "NevParadigm.h"

"* FUNCTION NAME : main()
"* DESCRIPTION:
4 Evoked by ANNS main process.

main(argc, argv)
int argc,
char -argv[l,
{

int socket;.
void INTERESTING.EVENTO;

INITPAK parameters;
int count=O,stopit=10000;

int avg,avgs=50,

cocket = atoi(argv(l]);.

if(read(socket, ¶meters, sizeof(INITPAK)) < 0)
{

perror("BG(1) reading control parameters'); exit(23);
I

/4*4* All algorithms for BackProp paradigm component*****/
switch(parameters-algorithm[P_ALGORITPM])
{

case BACKPROP:
init-paradigm = init-trainBACKPROP;,
break;,

case BACKPROP2:
init-paradigm = init-train._BACKPROP2;
break;

case BACKPROP3:
init-paradigm = init-trainBACKPROP3;
break;

case BACKPROP6:
init-paradigm = init-train_1BACKPROP6;
break,

case BtCKPROP8:
init.paradigm= inm-ttrainBACKPROP8;
break;

case BACKPROP3:
init-paadigrm = init-trainBACKPROP9;,
break;

1:38

case BACKPROP10:
init..paradigm = init-train-BACKPROPlO;
break;

case BACKPROP-GS:
init..paradigm =init..train-.BACKPROP-GS;
break;

case BACKPROP..GSID:
init-paradigm = init-train..BACKPROP-GSIDi
break;

case BACNPROPC:
init-paradzg~a = init..train-BACKPROPC;
break;

case RADIAL:
init..paradigm = init-.train-RADIAL,
break;

case preprocess:

init-paradign = inat-train..preprocess;
break;

case BRAIN:

xnit-paradigm =init-train..BRAIN;
break;.

default.

perror(" Unknown algorithm for BackProp Paradigm"); ezit(25);

/*sdisplay the title 'Multilayer Perceptron'.**/
INTERESTING-EVENT(socket, IIT);,

for(avgfl ;avg<=avgs ;avg++){
INTERESTING-EVENT(socket, Initxalize..Net);.

for(count=O;count <stopxt;count ++){
INTERESTING-EVENT(socket, Make-Input);
INTERESTING.EVENT(aocket, Propagation);

INTERESTING..EVENT(socket, Trainjet);,
INTERESTING-EVENT(socket, Displayjiet),

I
INTERESTINt-EVENT(socket, FINAL);,

INTERESTINt-EVENT(socket, DONE);

INTERESTING..EVENT(socket,. BO..WAIT);

*FUNCTION NAME : void INTERESTINQ.EVENT(int, int, int, int)

*DESCRIPTION:

* Receives an Interesting Event argument, gaits on a
* Erequest from the AlliS main process, sends the IE operations.

*INPUT PARAMETERS-

* socket - plug in main process

* type - type of event
*OUTPUT PARAMETERS:

* write IE-DATA to main algorithm process

void INTERESTING-EVENT(socket, type)

int socket, type;.

IE-DATA IEpacket;,

int IErequest;

if(read(aocket, tlErequest, sizeof(int)) < 0)

perror ("Waiting for IErequest");. ezit(20);

if(IErequest == BG-QUIT)
exit(O);

139

IEpacket.type = type;ý
if(write(socket, kIEpacket, sizeof(IE.DATA)) < 0)
{

perror("Writing IE operations"); exit(22);
}

I

4. Algorilhms.c

contains functions which manage the NN algorithm parameters for the NN new

paradigm class of algorithms. The example fil,' is as following:

"* FILE Alg.c
"* DESCRIPTION : This file contains functions which manage the NE
* algorithm parameters for the BackProp class of algorithms.
* FUNCTIONS :
* int addAlgorithmSection(Panel, int)

* void getAlgorithmParameters(PARAMS)
* void setAlgorithmParameters(PARAMS)

* char *setAlgorithmlNameO

#include "NewParadigm.h"
static Panel-item algorithmItem;

"* FUNCTION NAME : int addAlgorithmSection(Panel, int)
"* DESCRIPTION :, Adds to the Master Control Panel the items that

* control algorithm parameters.
* INPUT PARAMETERS :
* panel - the panel to which the items are added

* row - the panel row on which the items begin
* OUTPUT PARAMETERS :
* row - the panel row on which the next panel item should begin

int addAlgorithmSection(panel, row)
Panel panel;

int row;
{

(void) xv-create(panel, PANEL-MESSAGE,

PANELNEXTROW, -1,
PANELLABELBOLD, TRUE,

PANELLABELSTRING,
------------------------- ALGORITHM OPTIONS- ,

NULL);

algoritlhmItem = xvwcreate(panel, PANEL-CHOICE,
PANELNEXTROW, -1,
PANELDISPLAYLEVEL, PANEL-CURRENT,

PANELLABELSTRING, "Algorithm Type
PANELCHOICESTRINGS, "Back Propagation",

"Back Prop W/ Momentum",
"Second Order Learning",
"Cotrell Identity Net",
"Tarr/Cotrell Identity",
"Auto-Add a Layer",
"Gram-Schmidt Network",
"Gram-Schmidt ID Net",
"BrainMaker",
"Radial Basis",
"Conic Basis",

NULL,
PANEL-VALUE, 0,

140

NULL);
return(row+4);,

}

* FUNCTION NAME : void getAlgorithmParameters(PARAMS)

* DESCRIPTION : Saves the current algorithm parameters.

* INPUT PARAMETERS parameter - PARAMS array
* OUTPUT PARAMETERS : None
* GLOBALS USED : algorithmItem

* FUNCTIONS CALLED: xv-get()

void getAlgorithmParameters(parameter)

PARAMS parameter;
{ int algorithm;

algorithm= (int)xv-get(algoritlnItem, PANELVALUE);

parameter [P.ALGORITHM] = (int)xv.get(algorithmltem, PANELVALUE);

I

"* FUNCTION NAME : void setAlgorithmParameters(PARAMS)
"* DESCRIPTION : Sets the algorithm paramters after a restore operation.
"* GLOBALS USED algorthmlItem

"* GLOBALS AFFECTED : sets value of algorithmlItem
"* FUNCTIONS CALLED: xv-set()

void setAlgorithmParameters(parameter)
PARAMS parameter;{

xv-set(algorithmItem, PANEL-VALUE, parameter[PALGORITHM], NULL);
}

/*** * ***** **** ** * **** **** ** ****** ** *** *** *** ***** ****** *** ** ****** ** ***

* FUNCTION NAME : char* getAlgorithmName()
* DESCRIPTION : Provided so that the common setALgWindowTitleO function

* can get the algorithm name without any global naming conventions.
* INPUT PARAMETERS : None

* OUTPUT PARAMETERS : pointer to string (algorithm name)
* GLOBALS USED :, algorithmItem
* GLOBALS AFFECTED : None

* CALLED BY : setAlgWindowTitle()
* FUNCTIONS CALLED: xv-getO, panel-get()

char* getAlgorithmName()
{

int algorithm;

algorithm = (int)xv-get(algorithmItem, PANELVALUE);
return((char *)xv-get(algorithmItem, PANELCHOICESTRING, algorithm));,

I

5. Graphicall'iew.c

processes lEs, paints all ý,'aphical views on simulation canvas, and updates

the simulation status. This is the most important file for Client-programmers.

The functions that client-programmers need to modify are addConJigScclion O.

updat(A"0) and updaicSlalus(). The example of the apd.C.Vci() function that

1-11

need to be modified is as following (C'ompare this functions with BG-main..c

for understanding of the IE processes.):

"* FUNCTION NAME : void updateNet(int, int, Pixwin)

"* DESCRIPTION : Updates the graphical view

extern nnet *net;
extern int which.exemplari
extern setup BPparameters;
void updateNet(type,thePixvin)
int type;
Pixvin *thePixwln;{

switch(type)

{
case INIT:

/**** CLEAR THE CANVAS ****/
pw.rop(thePixvin, 0, 0, NetWidth, NetHeight,

PIXSRC I PIXCOLOR(WHITE), NULL, 0, 0);
pvtext(thePixzin,5, 10,

PIXSRC I PIXCOLOR(BLUE), NULL, "Multilayer Neural Net");
break;

/***These cases call NN operation functions*****/
case InitializeNet"

INITIALIZE(TRUE);
break;,

case Make-Input:
MAKEINPUT(net->inp, net->doft,which-exemplar);
break;

case Propagation:
FEEDFORWARD();
break;,

case Train-Net:
TRAIN.NET(;.
break;,

case Display _Net "
/**** CLEAR THE CANVAS ****/

pw-rop(thePixwin, 0, 0, NetWidth, NetHeight,
PIXSRC I PIXCOLOR(WHITE), NULL, 0, 0);

pw-text(thePixvin,10, 10,
PIXSRC I PIX-COLOR(BLUE), NULL, "Multilayer Neural Net");

DISPLAYNET(thePixwin);
break;,

case FINAL:
hold-one-out();

file-saliency(O);
do-avg(,,
write-calvin-weights("aeights.calvin"),

break;

6. IniLud.c and Control.c

1nihal.c contains the global data declarations needed by the paradign) class

common routines. Cotrol.c consists of functions to control the execution of

the simulation: the control panel, IPC with ANNS, and IPC with the main

1-12

algorithm background procedure. Client-programmers only need to modify the

name of the included header files in these two files.

B.-1.2 BackProp Sabdircclory. This (directorv is an example of NN

paradigm component. Client-programmers may take this as an example for adding

new NN paradigm to ANNS. Figure 38 shows the module diagram for the BackProp

paradigm.

Multilayer InitializeNet
Interesting Perceptron

Events Neural Network
Handler (BG maino)

MakeInput

UNIX
Socket

Connector

Display Train Propagation

AlgorithmNet View Net
Selectrj

Figure .58. Module Diagram for BackProp NN subsystem

In pseudo-code the general flow of the BackProp paradigm is shown below:

begin
INITIALIZE
loop {

MAKE.INPUT
PROPAGATE
TEST
TRAIN-NET

14 3

DISPLAY-NET
Event Handler}

end loop
end

1 4-

Appendi:x, C. ANNS User Evaluation Form

CAD-Tool Human-Con-puter Interface Evaluation'

Name (administrative use only):

Estimated time spent with tool/system [:

Do not write in these space.s
Tool Evaluated:
Class:
Group:
Exper:
First:
ID#:

PLEASE READ BEFORE PROCEEDING:

The following questionnaire is designed to provide user feedback
on the human-computer interface of the specified computer-aided de-
sign (CAD) tool. Through your responses, we hope to measure your
degree of satisfaction with the tool, with primary emphasis on the
"user-friendliness" of the human-computer interface.

The questionnaire consists of a set of 11 factors, plus an overall
rating. We will determine your satisfaction with the tool based on
your response to six adjective pairs used to describe each factor. Each
adjective pair has a seven-interval range where you are to indicate your
feelings with an "X". Responses placed in the center of the range will

U S Air Force Institute of Technologv. A 1IT/ENG

1,15

indicate that you have no strong feelings one way or the other, or that
you cannot effectively evaluate that given factor.

Evaluation begin time 1:_..

t 16

1. System Feedback or Contcnt of the Information Displayed. The extent to which
the system kept you informed about what was going on in the program.

insufficient sufficient
unclear clear
useless useful

bad j J good
unsatisfactory H satisfactory

To me this factor is:
unimportant Tf II I 1tinportan't

Comments:

2. Conirnuaication. The methods used to communicate with the tool.

complex j simple
weak I powerful

bad good
useless useful

unsatisfactory satisfactory

To me this factor is:

unimportant i mportant

Comments:

3. Erroro Prevention Your perception of how well the system pievented user in-
duced errors.

bad . __I good
insufficienit sufficient
incomplete complete

low J h
unsat IsfactorN - - - _- sat isfactory

To me this factor is:

uni.lportanlt t import anit

1,47

Comments:

4. Error Recovery. The extent and ease with which the system allowed you to
recover from user induced errors.

unforgiving forgiving
incomplete _-- complete

complex simple
slow fast

unsatisfactory L satisfactory
To me this factor is:

unimportant I I I I IT important

Comments:

5. Documentation. Your overall perception as to the usefulness of documentation.

useless I useful
incomplete j complete

hazy clear
insufficient sufficient

unsatisfactory satisfactory

To me this factor is:

unimportant I I J I 1 7 important

Comments:

6. Expeclation s. Your perception as to the services provided by the system based
On your expectations.

displeased _ pleased
low I high

uncertain definite
p)essimistic , optimistic

unsatisfactory H satisfactory

ils

To me this factor is:

unimportant IZIZEW important

Comments:

7. Confidence in the System. Your feelings of assurance or certainty about the
services provided by the system.

low[I j high
weak strong

uncertain definite
bad good

unsatisfactory satisfactory

To me this factor is:
ulnimportant 1 ITIi l important

Comments:

8. Ease of Learning. Ease with which you were able to learn how to use the
system to perform the intended task.

difficult easy
confusing I clear
complex simple

Slow fas t

unsatisfactory j satisfactory

To me this factor is:

unimportant I I. I important

Comments:

9. Display of Information. The manner in which both program control and data
information were displayed on the screen.

!19

confusing clear
cluttered well defined

incomplete complete

Complex simple
unsatisfactory [] satisfactory

To me this factor is:

unimportant E1IIiII important

Comments:

10. F;Wing of Control. Your ability to direct or control the activities performed
by the tool.

low high
insufficient sufficient

vague precise
weak strong

unsatisfactory H satisfactory
To me this factor is:

unimportant -- i1ti1timportant
Comments:

11. Iklcvancy or Sysicm Us@cflncss. Your perception of how useful the system is
as an aid to a software developer.

useless] useful
inadequate H IL adequate

hazy clear
insufficient sufficient

unsatisfactory satisfactory

To me this factor is:

unimportant • important

I _50

Comments:

12. Overall Evaluation of the System. Your overall satisfaction with the system.

unsatisfied I satisfied

(cont 'd)

1.51

Comments on the Overall System:

Evaluation end time[j

Total time spent on evaluation 1:

Thank you for your help.

152

Appendix D. The ANNS Source Codes

I 53

Bibliography
I . Bochm., Barry NV. "A Spiral MN-odel of' Software Development and E'lnhance-

ment." IEEE C~omputcr. 61-72 (May 19S8).

2. Hooch. Grady. "Object-Oriented D~evelopment." IEEE Tranusaction on Soft ivra
Engineering. SEý-12:21 1-221 (February 1986).

3. IBooch, Grady. Softwvare Componcnts with Ada. Menlo Park CA: The B~en-
jamin/Cummings Publishing Company . nc. 1987.

-1. IBooch, Grady. Softwvare Engineering wit/h Ada (Second Eldition). Menlo P~ark
CA: The Benjamin/Cummings Publishing Company, Inc, 1987.

5. lBooch. Grady. Object Oriciute Design with Application~s. Redwood City CA:
The lBenjamin/Cummnings Publishing Company, Inc. 1991.

6. EVB Software Engineering. Inc. An Objcct Orientdu De(sign Handbook. 1EýVI
Software E'ngineering, Inc. t983.5

7. Garth. S. "A Dedicated Computer for Simulation of Large Systems of' Neural
Nets.� Neural Computers. -135-4-l4 (Springer 1989).

S. Gottfrie~d. Byvron S. Programming w-ith C. New York. New York: McGraw-I lill
Publishing Company. 1990.

9. H~eller. D)an. XI Vew Programming Manual. Sebastopol CA: O*Reilly k Asso-

ciates, Inc. 1991.

10. Hlenderson-Sellers. B~rain and Julian M. Edwards. 'I'lie Object-Oriented Sys-
temns Life Cycle,"" Comm unications of the A C.11. 33:1-42 -1.59 (September 1990).

11 . H-uang,, W. Y'. and R{. P. Lippmann. "Neural Net, and Traditional Classi-
fiers, Proceeding of the C~oinfe re ii on Neural Inform at ion iiJrom!esing .Sy-s! ms
(November 1987).

12. H-1umphrey, WVat ts S. la naging the Softwraie Proces-s. Massachusetts: A ddison-
W~esley Publishing Company, Inc.. 1989.

13. Jean, Catherine and Alfred Strohincier. "An experience in teaching OOD for
ADA software,* Softwvare Engineering Nlotes, 15:44l - 99 (October 1990).

11. Johnson, E~ric F. and Kevin Reichard. X HIindow Applications Programming.
Portland: MIIS Press, 1989.

15. Jones, Oliver. Introduction to the X Hindow Systemn. Englewoodl Cliffs N.J:
Prentice Hall. 1989.

16. lKernighan. B~rian WV. and IDennis kvV. Richie. The C Programming Language.
MIA: Prentice Haill, Inc. 1988.

17. Koivunen, Marja-Ritta and Martii Mlantyla. '-I ut.Windows: An Improved Ar-
chitectunre for a User Interface Management System.-~ IEEE Computer Graphics
(a1n(Applications. -13 -. 52 (.January 1988).

18. Korson. Time and John D. McGregor. "Understanding Object Oriented: A Uni-
fying Paradigm,"' Communications of the ACM, 33:40- 60 (September 1990).

19. Lippmann. Richard P), "An Introduction to Computing with Neural Nets."

IEEI" ASSt' Magazine (April 1987).

20. Lowgren, Jonas. "History. State and Fu•ture of User Interface Management
Systems." SIGCJI[Bulletin. 20:32 - u4 (July 1988).

21. Mackie. S.. It.P. Graf and Schwartz 1). B. "Implementations of Neural Network
Models in Silicon. NVeural Computers, -167--476 (Springer 1989).

"22. Myers, Brad A. "'A Taxonomy of Window Manager User Interfaces.- IIEEE
Computer cGraphics and A pplicalions, 8:65-84 (September 1988).

23. Myers, Brad A. Software Design: Uscr Intcjracc Dcsign (1), 1lidco tape num-
bc,, AC-SD-0-24 . Carnegie Mellon University, Software Engineering Institute.
1989.

24. Myers, B3rad A. Software Design: User Intcrface Design (2). Video tape num-

b(u. A C-SD-0l-25. Carnegie Mellon University, Software Engineering Institute,
1989.

2.5. Myers. Brad A. and Matlv Beth Fosson. "',sei Interface Programming Survey."
SIGCIII Bulletin. 23:27 - 30 (April 1991).

26. Nye. Adrian. Xbb Prog:ramming Manual. Sebastopol CA: O'Reilly k- Asso-
ciates. Inc, 1991.

27. Open Software Foundation. El2glewood Cliffs. New Jersey. OSI"/Mot if'-" Pro-
grammer s Guide. 1990.

28. Pountain. Dick. "'The X Window System." Blye. 14:3,33-360 (January 1989).

29. Pressman, Rogets S. Softlwar(Engineri.ng. A Practiton(rs Approach. New
York. New York: McGraw-Hill, Inc. 1987.

30. Raalte, Thomas Van. editor. Xl'c:w Rcference Manual. Sebastopol CA:

O'Reilly k Associates, Inc. 1991.

31. Roberts. Stephen D. and ,Joe Helim. -A perspective on ohject-oriented simula-
tion," Proceedings of the 19,98 Ilinter Simulation Confireince, 277 - 281 (1988).

32. Rogers. Steven K. and Matthew Kabrisky. An Introducton to Biological and
Artificial Neural Netrvworks for Palttrn lecognition. Wright Patterson AFI3.
0H110: Air Force Institute of Technology. 1989.

33. Rubin, Robert v.. James Walker 11 and Eric Golin. -'D)esign and Inplementation

of Programming Environments in the Visual Programmers Workbench.- Pro-
ceding.s of !he 4tlh Annual Int onation al Cgomputctr Softiware and Application.s
Confe rence. 5,17-5554. Piscataway, NJ: IEEE Press, 1990.

1.55

341. R~uck, Dennis WV., et al. -The Multilaver Perceptron: A Bayes Optimal Dis-
criminanit Function Approximator., IEEE Tr-a sations oil Neitral Net works (1,
March 1990).

35. Rumbaugh, James and others. Objcct-Ol-riened Modeling and Dcsign. E',ngle-
wood Cliffs, NJ: Prentice Ball. 1991.

36. Scheiflier, Robert NV. and others. The X Wlindou. System: C Libr-ary and Pr-o-
tocol IReference. D)igital P ress, 1988.

.37. Scheiflier, Robert WV. and Jim Gettys. -The X Window System," A.4CM TIu ns-
actions on Graphics, 5:79-109 (April 1986).

.38. Seidewitz. E-'d and Mike Stark. "Towards a General Object-Oriented Software
Development Mlethodology.- Ada Letters~. VI1:5-4 67 (Juily. August 1987).

.39. Silicon Graphics, Ijic. Gr-aphics Library P-rogr-amming Guide. 1989.

10. Silicon G rap~hics. Inc. Graphics L ibrai- HrI~feren cc M4an nial. 1989.

-1i. Snith. Svydn-ey L. and[Jane N. \Ioi-, Guidelines fo Designing L ser Interfacc
Softwvare. B~edford MA: MJTfl- Ii Corporation, A ugust. 1986. Contract F1962S-
86- C-000 1.

,12. Sommerville. Ian. Softivarc Engineeri-ng (Third Edition). Massachusetts:
Addison-Nkesley Publishing Company. 1989.

413. S tinl MIicrosystems, Inc. Net work P'rogramming. 1990.

-1-1. Sunl Nlicrosvystcms. Inc. Openil''indows l'esion 2 Release Notes. 1990.

4.-5. sunl Mi1crosystems. Inc. Progr-aminng Utilities and Libraries. 1990.

-46. Sunl Mlicrosy'stems. Inc. S5un OS I?cfe rence Mlanual. 1990.

47. Sutil NIMicrosysteims. Inc. Sun I icu' Programinmci' s Guide. 1990.

AS. Sunl Mficrosystemns. Inc-. Sunl 1 'licw System Prograinminers Guide. 1990.

-19. Su~nSoft. D~iv of Sun Microsystems. Openi Windows", I 'esion 3 for S1171Q57"',

4j.I.x. 1991.

530. Szekely, Pedro. "Separatino the User' Interface from the Functionality of Appli-
cation Programnsj SIGC7I1I JBulletin. 18:45 4 -6 (October 1986).

51. TIarr. Gregory L. Dynamic A4 nalysis of FeedforwiardXNut ral Netwvorks using Slim-
ulated and Mecasurecd Data. MS thesis. School of E-,nginleering., Air Force Institute
of Technology (AU'). NVright-1Pat terson A FB 011. D~ecember 1988.

52. Tzirr. Gregory L. --AFIT1- Neural Network lDevelopment TFools and Modeling Ar-
tificial Neural Networks.- SPIE SYMPOSIUM Onl Applications of A iiicial Neurial
Netwvorks8 (1989).

53. Tarr. Gregory L.. et. al. "Eff1ective N~eural Network Mlodeling in C,- Iroceeding~s
of the 19.91 lIntrnational Conf rcenc Onilr~~ilNerlNtwr~ (.June 1991).

1.56

54. Trumbly, James E. and Kirk P. Arnett. "Including a User Interface Management
Systems (UIIMS) in the Performance Relationship Model," SIGCIII Bulletin.
20:56-62 (April 1989).

55. Unger, Brain \'N. "Object oriented simulation -Ada, C++, Simula," Proceedings
of the 1986 Hlintir Simulalion Confernence. 123-- 124 (1986).

56. N¥u. Ching-seh. "'ANNS Programmer's Guide," In Publication (June 1993).

57. WVu. Ching-seh. -ANNS User's Manual," In Publication (June 1993).

58. \Vu, Cling-seh. et al. "A Public Domain X \Window Based Artificial Neural
Network Simulator," Sub???iith .dfor Publication (.June 1993).

59. Young. l)ouglas. X Wlindow' Sqstm.s: Programming and .1Applications ivih N1.
Englewood Cliffs NJ: Prentice Hall. 1989.

60. Yourdon. E:,d ward. Modern S/ru clurird A lt al!ysis. En glewood Cliffs. NJ:
Prentice-Hall. Inc. 1989.

157

Vita

Captain Ching-seh \Vu was born on 24 January 1963 in Kaohsiung, Taiwan,

Republic of China (R.O.C.). He graduated from Tzuoying High School in Kaohsiung,

a southern city of Taiwan, in June 1981. He received a Bachelor of Science in

Surveying Engineering degree at the Chun-Chen Institute of Technology in Taoyuan,

a northern city of Taiwan, in June 1986. After graduation,, he was assigned as

a first lieutenant of the R.O.C. Air Force and worked as an Intelligence officer at

Taoyuan Air Force Base. In March 1989, he came to United States and attended an

Intelligence Officer Training course for three months at Goodfellow Air Force Base in

Texas. He was accepted into the R.O.C. Air Force Education Program and entered

the School of Engineering at Air Force Institute of Technology (AFIT) of United

States in June, 1991. One month before coming to United States, Captain NVu got

married to Pi-chiao (,Joy) Yu and now has a Chinese-American baby: Kevin Wu.

U~pon completion of his graduate studies at the Air Force Institute of Tecliol-

ogy. Captain \Vu will begin an assignment at the R.O.C. Air Force Academy.

Permanent address: 16 SanMing 11d. KunugSang
Kaohsitung, Taiwan, .0O.C.

1.58

June 1993 MaLsterM Thesis

AN NS-Au IX W~indow Blased1 Version of thre ARFT Neuiral Network Simulator

Chl ri-sel WVIt

Air Force hIstititte of Technology. WPAFB OH 45433-G583 AFIT/GCF/ENG/93.1-o1

Distribuition UI t~nlimtedl

Abstract

This lesi prv~euri r anl X Witiflo4w based ri izral ne't wo rk -4111 tititi at14i 'vi r' .nirjer, t 14 velol) I at. Air Fl irce
1 istittite o f Technolog d Ig A FIT) using, het# ceuq tsf modiderij soft ware eniginrrerintg . Thiiis art ificial ni ott al

etivw. irk sittiiilatt r is a tii,ol riumn- ii u Stirt S PAUHCsr a ii is and Sii sr iprrt inrg tw ui rser ii,'oh s: vnti -ti -irs atit
el, tt- riganiler.End -itrsers i nterac-t withI n.'it ral ne two rk parad Iigm s de'Iil" 'v ' II V'Iiut-)tyr~ih~ir fo~r

fvplirpio of t tittyinrg and iitlalyY itng- t he' #eXVV1trtoi1 of a part lticitar Nv i iral Net wo rk N N) pamin r1r Ig. ir cls
4f N.N ai.'ithti.Clio-nt pro gramumrers main:it ain thle systeim and tim:51 this eivi ro tir enit. fo r O.wh (IC Veli ptIre II-
toF new NN paradligms or algoritliris, for endl-users. Thre h'vweliiipment ftiiihws a Itylirtil oianiern
parailigiri which comizijies the#. best characetristic~s of thle classic li fe cycle. jiriitr fypu. and i t.erati Vf' Iio'f.Iiiiil
iiligies' thriough reptirer~unom.q. de~Azryn. implnph-iuifatwrn. andIrizg Are tiIject -orueivied approac iad s used f i ir
ther designi including preiminilary awl fietailivi! design. The systetit is impijlemientedl withI theII C Jprograiihtling
lanti-age on Sun w~orkstation and uises the XView windfow-Ipntsedi I-iuviruoritro't. It. providles tiserm with at variety
of control andI input options: simxuilation speed.1 conitro. multiple antd sirritilt ativotis INN algooril liti Siimutlat 141145.
anid Simu11lationt enviro nmient control.

Neuiral Network Sitmulator. Xview. C 172

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 1.11,

